943 resultados para semiarid typical grassland
Resumo:
P>1. Management of lowland mesotrophic grasslands in north-west Europe often makes use of inorganic fertilizers, high stocking densities and silage-based forage systems to maximize productivity. The impact of these practices has resulted in a simplification of the plant community combined with wide-scale declines in the species richness of grassland invertebrates. We aim to identify how field margin management can be used to promote invertebrate diversity across a suite of functionally diverse taxa (beetles, planthoppers, true bugs, butterflies, bumblebees and spiders). 2. Using an information theoretic approach we identify the impacts of management (cattle grazing, cutting and inorganic fertilizer) and plant community composition (forb species richness, grass species richness and sward architecture) on invertebrate species richness and body size. As many of these management practices are common to grassland systems throughout the world, understanding invertebrate responses to them is important for the maintenance of biodiversity. 3. Sward architecture was identified as the primary factor promoting increased species richness of both predatory and phytophagous trophic levels, as well as being positively correlated with mean body size. In all cases phytophagous invertebrate species richness was positively correlated with measures of plant species richness. 4. The direct effects of management practices appear to be comparatively weak, suggesting that their impacts are indirect and mediated though the continuous measures of plant community structure, such as sward architecture or plant species richness. 5. Synthesis and applications. By partitioning field margins from the remainder of the field, economically viable intensive grassland management can be combined with extensive management aimed at promoting native biodiversity. The absence of inorganic fertilizer, combined with a reduction in the intensity of both cutting and grazing regimes, promotes floral species richness and sward architectural complexity. By increasing sward architecture the total biomass of invertebrates also increased (by c. 60% across the range of sward architectural measures seen in this study), increasing food available for higher trophic levels, such as birds and mammals.
Resumo:
Mixed ligand complexes: [Co(L)(bipy)] (.) 3H(2)O (1), [Ni(L)(phen)] (.) H2O (2), [Cu(L)(phen)] (.) 3H(2)O (3) and [Zn(L)(bipy)] (.) 3H(2)O (4), where L2- = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H(2)bzimida, hereafter, H,L), bipy = 2,2' bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10(-1) mol dm(-3) (NaNO3), at 25 +/- 1 degrees C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H-1L)(-), M(B)(2+), M(L)(B), M(H-1L)(B)(-), M-2(H-1L)(OH), (B)M(H-1L)M(B)(+), where H-1L3- represents two -COOH and the benzimidazole NI-H deprotonated quadridentate (O-, N, O-, N), or, quinquedentate (O-, N, O-, N, N-) function of the coordinated ligand H,L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)(2+) = (B)M(H-1L)M(B)(+) + H+ is favoured with higher pi-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Delta logK(M) values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Equilibrium study on complex formation of Co(II), Ni(II), Cu(II) and Zn(II), hereafter M(II), with the quadridentate (O-, N, O-, N) donor ligand, N-(2-hydroxybenzyl)-L-histidine (H(2)hb-L-his, hereafter H2L), in the absence and in the presence of typical (N, N) donor bidentate ligands, 1,10 phenanthroline(phen), 2, 2'-bipyridine(bipy), ethylenediamine(en), hereafter B, in aqueous solution at 25 +/- 1 degrees C was done at a fixed ionic strength, I = 0.1 mol dm(-3) (NaNO3) by combined pH-metric, UV-Vis and EPR measurements provide evidence for the formation of mononuclear and dinuclear binary and mixed ligand complexes of the types: M(L), M(L)(2)(2-), M-2(L)(2+), M-2(H-1L)(+), M(L)(B), (B)M(H-1L)M(B)(+). The imidazole moiety of the ligand is found to act as a bridging bidentate ligand in the dinuclear M-2(L)(2+), M-2(H-1L)(+) and (B)M(H-1L)M(B)(+) complexes, using its N-3 atom and N1-H deprotonated moiety. Stability constants of the complexes provide evidence of discrimination of Cu(II) from the other M(II) ions by this ligand. Solid complexes: [Ni(L)(H2O)(2)] (1), [Cu(L)(H2O)] (2), and [Ni(L)(bipy)] (.) H2O (3) have been isolated and characterized by various physicochemical studies. Single crystal X-ray diffraction of the ternary complex, 3, shows an octahedral [(O-,N,N,O-)(N,N)] geometry with extensive pi-pi stacking of the aromatic rings and H-bonding with imidazole (N1-H), secondary amino N-atom, the lattice H2O molecule, and the carboxylate and phenolate O-atoms. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Binocular disparity, blur, and proximal cues drive convergence and accommodation. Disparity is considered to be the main vergence cue and blur the main accommodation cue. We have developed a remote haploscopic photorefractor to measure simultaneous vergence and accommodation objectively in a wide range of participants of all ages while fixating targets at between 0.3 and 2 m. By separating the three main near cues, we can explore their relative weighting in three-, two-, one-, and zero-cue conditions. Disparity can be manipulated by remote occlusion; blur cues manipulated by using either a Gabor patch or a detailed picture target; looming cues by either scaling or not scaling target size with distance. In normal orthophoric, emmetropic, symptom-free, naive visually mature participants, disparity was by far the most significant cue to both vergence and accommodation. Accommodation responses dropped dramatically if disparity was not available. Blur only had a clinically significant effect when disparity was absent. Proximity had very little effect. There was considerable interparticipant variation. We predict that relative weighting of near cue use is likely to vary between clinical groups and present some individual cases as examples. We are using this naturalistic tool to research strabismus, vergence and accommodation development, and emmetropization.
Resumo:
PURPOSE. To investigate the nature of early ocular misalignments in human infants to determine whether they can provide insight into the etiology of esotropia and, in particular, to examine the correlates of misalignments. METHODS. A remote haploscopic photorefraction system was used to measure accommodation and vergence in 146 infants between 0 and 12 months of age. Infants underwent photorefraction immediately after watching a target moving between two of five viewing distances (25, 33, 50, 100, and 200 cm). In some instances, infants were tested in two conditions: both eyes open and one eye occluded. The resultant data were screened for instances of large misalignments. Data were assessed to determine whether accommodative, retinal disparity, or other cues were associated with the occurrence of misalignments. RESULTS. The results showed that there was no correlation between accommodative behavior and misalignments. Infants were more likely to show misalignments when retinal disparity cues were removed through occlusion. They were also more likely to show misalignments immediately after the target moved from a near to a far position in comparison to far-to-near target movement. DISCUSSION. The data suggest that the prevalence of misalignments in infants of 2 to 3 months of age is decreased by the addition of retinal disparity cues to the stimulus. In addition, target movement away from the infant increases the prevalence of misalignments. These data are compatible with the notion that misalignment are caused by poor sensitivity to targets moving away from the infant and support the theory that some forms of strabismus could be related to failure in a system that is sensitive to the direction of motion.
Resumo:
Perceptual grouping is a pre-attentive process which serves to group local elements into global wholes, based on shared properties. One effect of perceptual grouping is to distort the ability to estimate the distance between two elements. In this study, biases in distance estimates, caused by four types of perceptual grouping, were measured across three tasks, a perception, a drawing and a construction task in both typical development (TD: Experiment 1) and in individuals with Williams syndrome (WS: Experiment 2). In Experiment 1, perceptual grouping distorted distance estimates across all three tasks. Interestingly, the effect of grouping by luminance was in the opposite direction to the effects of the remaining grouping types. We relate this to differences in the ability to inhibit perceptual grouping effects on distance estimates. Additive distorting influences were also observed in the drawing and the construction task, which are explained in terms of the points of reference employed in each task. Experiment 2 demonstrated that the above distortion effects are also observed in WS. Given the known deficit in the ability to use perceptual grouping in WS, this suggests a dissociation between the pre-attentive influence of and the attentive deployment of perceptual grouping in WS. The typical distortion in relation to drawing and construction points towards the presence of some typical location coding strategies in WS. The performance of the WS group differed from the TD participants on two counts. First, the pattern of overall distance estimates (averaged across interior and exterior distances) across the four perceptual grouping types, differed between groups. Second, the distorting influence of perceptual grouping was strongest for grouping by shape similarity in WS, which contrasts to a strength in grouping by proximity observed in the TD participants. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
This paper describes some of the preliminary outcomes of a UK project looking at control education. The focus is on two aspects: (i) the most important control concepts and theories for students doing just one or two courses and (ii) the effective use of software to improve student learning and engagement. There is also some discussion of the correct balance between teaching theory and practise. The paper gives examples from numerous UK universities and some industrial comment.
Resumo:
1. Declines in area and quality of species-rich mesotrophic and calcareous grasslands have occurred all across Europe.While the European Union has promoted schemes to restore these grasslands, the emphasis for management has remained largely focused on plants. Here we focus on restoration of the phytophagous beetles of these grasslands. Although local management, particularly that which promotes the establishment of host plants, is key to restoration success, dispersal limitation is also likely to be an important limiting factor during the restoration of phytophagous beetle assemblages. 2. Using a 3-year multi-site experiment, we investigated how restoration success of phytophagous beetles was affected by hay-spreading management (intended to introduce target plant species), success in restoration of the plant communities and the landscape context within which restoration was attempted. 3. Restoration success of the plants was greatest where green hay spreading had been used to introduce seeds into restoration sites. Beetle restoration success increased over time, although hayspreading had no direct effect. However, restoration success of the beetles was positively correlated with restoration success of the plants. 4. Overall restoration success of the phytophagous beetles was positively correlated with the proportion of species-rich grassland in the landscape, as was the restoration success of the polyphagous beetles. Restoration success for beetles capable of flight and those showing oligophagous host plant specialism were also positively correlated with connectivity to species-rich grasslands. There was no indication that beetles not capable of flight showed greater dependence on landscape scale factors than flying species. 5. Synthesis and applications. Increasing the similarity of the plant community at restoration sites to target species-rich grasslands will promote restoration success for the phytophagous beetles. However, landscape context is also important, with restoration being approximately twice as successful in those landscapes containing high as opposed to low proportions of species-rich grassland. By targeting grassland restoration within landscapes containing high proportions of species-rich grassland, dispersal limitation problems associated with restoration for invertebrate assemblages are more likely to be overcome.
Resumo:
Permanent grassland makes up a greater proportion of the agricultural area in the UK and Ireland than in any other EU country, representing 60% and 72% of UAA respectively (Eurostat 2007). Of the permanent grassland in the UK, approximately half (about 6 million hectares) comprises improved grassland on moist or free-draining neutral soils typical of lowland livestock farms. These swards tend to have low plant species richness and are typically dominated by perennial ryegrass (Lolium perenne). The aim of this paper is to review the ways in which biodiversity of such farmland can be enhanced, focussing on the evidence behind management options in English agri-environment schemes (AES) at a range of scales and utilising a range of mechanisms.
Resumo:
The potential interactive effects of future atmospheric CO2 concentrations and plant diversity loss on the functioning of belowground systems are still poorly understood. Using a microcosm greenhouse approach with assembled grassland plant communities of different diversity (1, 4 and 8 species), we explored the interactive effects between plant species richness and elevated CO2 (ambient and + 200 p.p.m.v. CO2) on earthworms and microbial biomass. We hypothesised that the beneficial effect of increasing plant species richness on earthworm performance and microbial biomass will be modified by elevated CO2 through impacts on belowground organic matter inputs, soil water availability and nitrogen availability. We found higher earthworm biomass in eight species mixtures under elevated CO2, and higher microbial biomass under elevated CO2 in four and eight species mixtures if earthworms were present. The results suggest that plant driven changes in belowground organic matter inputs, soil water availability and nitrogen availability explain the interactive effects of CO2 and plant diversity on the belowground compartment. The interacting mechanisms by which elevated CO2 modified the impact of plant diversity on earthworms and microorganisms are discussed.
Resumo:
A dynamic, mechanistic model of enteric fermentation was used to investigate the effect of type and quality of grass forage, dry matter intake (DMI) and proportion of concentrates in dietary dry matter (DM) on variation in methane (CH(4)) emission from enteric fermentation in dairy cows. The model represents substrate degradation and microbial fermentation processes in rumen and hindgut and, in particular, the effects of type of substrate fermented and of pH oil the production of individual volatile fatty acids and CH, as end-products of fermentation. Effects of type and quality of fresh and ensiled grass were evaluated by distinguishing two N fertilization rates of grassland and two stages of grass maturity. Simulation results indicated a strong impact of the amount and type of grass consumed oil CH(4) emission, with a maximum difference (across all forage types and all levels of DM 1) of 49 and 77% in g CH(4)/kg fat and protein corrected milk (FCM) for diets with a proportion of concentrates in dietary DM of 0.1 and 0.4, respectively (values ranging from 10.2 to 19.5 g CH(4)/kg FCM). The lowest emission was established for early Cut, high fertilized grass silage (GS) and high fertilized grass herbage (GH). The highest emission was found for late cut, low-fertilized GS. The N fertilization rate had the largest impact, followed by stage of grass maturity at harvesting and by the distinction between GH and GS. Emission expressed in g CH(4)/kg FCM declined oil average 14% with an increase of DMI from 14 to 18 kg/day for grass forage diets with a proportion of concentrates of 0.1, and on average 29% with an increase of DMI from 14 to 23 kg/day for diets with a proportion of concentrates of 0.4. Simulation results indicated that a high proportion of concentrates in dietary DM may lead to a further reduction of CH, emission per kg FCM mainly as a result of a higher DM I and milk yield, in comparison to low concentrate diets. Simulation results were evaluated against independent data obtained at three different laboratories in indirect calorimetry trials with COWS consuming GH mainly. The model predicted the average of observed values reasonably, but systematic deviations remained between individual laboratories and root mean squared prediction error was a proportion of 0.12 of the observed mean. Both observed and predicted emission expressed in g CH(4)/kg DM intake decreased upon an increase in dietary N:organic matter (OM) ratio. The model reproduced reasonably well the variation in measured CH, emission in cattle sheds oil Dutch dairy farms and indicated that oil average a fraction of 0.28 of the total emissions must have originated from manure under these circumstances.
Resumo:
In this study, we systematically compare a wide range of observational and numerical precipitation datasets for Central Asia. Data considered include two re-analyses, three datasets based on direct observations, and the output of a regional climate model simulation driven by a global re-analysis. These are validated and intercompared with respect to their ability to represent the Central Asian precipitation climate. In each of the datasets, we consider the mean spatial distribution and the seasonal cycle of precipitation, the amplitude of interannual variability, the representation of individual yearly anomalies, the precipitation sensitivity (i.e. the response to wet and dry conditions), and the temporal homogeneity of precipitation. Additionally, we carried out part of these analyses for datasets available in real time. The mutual agreement between the observations is used as an indication of how far these data can be used for validating precipitation data from other sources. In particular, we show that the observations usually agree qualitatively on anomalies in individual years while it is not always possible to use them for the quantitative validation of the amplitude of interannual variability. The regional climate model is capable of improving the spatial distribution of precipitation. At the same time, it strongly underestimates summer precipitation and its variability, while interannual variations are well represented during the other seasons, in particular in the Central Asian mountains during winter and spring
Resumo:
We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions.
Resumo:
Demands for thermal comfort, better indoor air quality together with lower environmental impacts have had ascending trends in the last decade. In many circumstances, these demands could not be fully covered through the soft approach of bioclimatic design like optimisation of the building orientation and internal layout. This is mostly because of the dense urban environment and building internal energy loads. In such cases, heating, ventilation, air-conditioning and refrigeration (HVAC&R) systems make a key role to fulfill the requirements of indoor environment. Therefore, it is required to select the most proper HVAC&R system. In this study, a robust decision making approach for HVAC&R system selection is proposed. Technical performance, economic aspect and environmental impacts of 36 permutations of primary and secondary systems are taken into account to choose the most proper HVAC&R system for a case study office building. The building is a representative for the dominant form of office buildings in the UK. Dynamic performance evaluation of HVAC&R alternatives using TRNSYS package together with life cycle energy cost analysis provides a reliable basis for decision making. Six scenarios broadly cover the decision makers' attitudes on HVAC&R system selection which are analysed through Analytical Hierarchy Process (AHP). One of the significant outcomes reveals that, despite both the higher energy demand and more investment requirements associated with compound heating, cooling and power system (CCHP); this system is one of the top ranked alternatives due to the lower energy cost and C02 emissions. The sensitivity analysis reveals that in all six scenarios, the first five top ranked alternatives are not changed. Finally, the proposed approach and the results could be used by researchers and designers especially in the early stages of a design process in which all involved bodies face the lack of time, information and tools for evaluation of a variety of systems.