938 resultados para self-assembled quantum dots
Resumo:
The biphenyl ethers (BPEs) are the potent inhibitors of TTR fibril formation and are efficient fibril disrupter. However, the mechanism by which the fibril disruption occurs is yet to be fully elucidated. To gain insight into the mechanism, we synthesized and used a new QD labeled BPE to track the process of fibril disruption. Our studies showed that the new BPE-QDs bind to the fiber uniformly and has affinity and specificity for TTR fiber and disrupted the pre-formed fiber at a relatively slow rate. Based on these studies we put forth the probable mechanism of fiber disruption by BPEs. Also, we show here that the BPE-QDs interact with high affinity to the amyloids of A beta(42), lysozyme and insulin. The potential of BPE-QDs in the detection of senile plaque in the brain of transgenic Alzheimer's mice has also been explored. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
InN quantum dots (QDs) were fabricated on Si(111) substrate by droplet epitaxy using an RF plasma-assisted MBE system. Variation of the growth parameters, such as growth temperature and deposition time, allowed us to control the characteristic size and density of the QDs. As the growth temperature was increased from 100 C to 300 degrees C, an enlargement of QD size and a drop in dot density were observed, which was led by the limitation of surface diffusion of adatoms with the limited thermal energy. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to assess the QDs size and density. The chemical bonding configurations of InN QDs were examined by X-ray photo-electron spectroscopy (XPS). Fourier transform infrared (FTIR) spectrum of the deposited InN QDs shows the presence of In-N bond. Temperature-dependent photoluminescence (PL) measurements showed that the emission peak energies of the InN QDs are sensitive to temperature and show a strong peak emission at 0.79 eV.
Resumo:
Nanosized hexagonal InN flower-like structures were fabricated by droplet epitaxy on GaN/Si(111) and GaN flower-like nanostructure fabricated directly on Si(111) substrate using radio frequency plasma-assisted molecular beam epitaxy. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to study the crystallinity and morphology of the nanostructures. Moreover, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to investigate the chemical compositions and optical properties of nano-flowers, respectively. Activation energy of free exciton transitions in GaN nano-flowers was derived to be similar to 28.5 meV from the temperature dependent PL studies. The formation process of nano-flowers is investigated and a qualitative mechanism is proposed.
Resumo:
We propose a new self-assembly based strategy for the design of novel lanthanide based luminescent materials. In this approach a europium hydrogel is prepared and sensitization is achieved by doping the gel with pyrene in a non-coordinated fashion.
Resumo:
Using ab initio methods we have investigated the fluorination of graphene and find that different stoichiometric phases can be formed without a nucleation barrier, with the complete “2D-Teflon” CF phase being thermodynamically most stable. The fluorinated graphene is an insulator and turns out to be a perfect matrix-host for patterning nanoroads and quantum dots of pristine graphene. The electronic and magnetic properties of the nanoroads can be tuned by varying the edge orientation and width. The energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO) of quantum dots are size-dependent and show a confinement typical of Dirac fermions. Furthermore, we study the effect of different basic coverage of F on graphene (with stoichiometries CF and C4F) on the band gaps, and show the suitability of these materials to host quantum dots of graphene with unique electronic properties.
Resumo:
The PbS quantum dots synthesized in PVA are used to investigate their photoluminescence (PL) response to various ions such as Zn, Cd, Hg, Ag, Cu, Fe, Mn, Co, Cr and Ni ions. The enhancement in the photoluminescence intensity is observed with specific ions namely Zn, Cd, Hg and Ag. Among these four ions, the PL response to Hg and Ag even at sub-micro-molar concentrations is quite high, approximately an order of magnitude higher than Zn and Cd. It is interesting to observe that the change in Pb and S molar ratio has profound effect on the selectivity of these ions. The samples prepared under excess of S are quite effective compared to Pb. Indeed, the later one has hardly any effect on the photoluminescence response. These results also indicate that the sensitivity of these QDs could be fine-tuned by controlling the S concentration at the surface. Contrary to the above, Cu, Fe and Co quenches the photoluminescence. Another interesting property of PbS in PVA observed is photo-brightening mechanism due to the curing of the polymer with laser. However, the presence of excess ions at the surface changes its property to photo-darkening/brightening that depends on the direction of carrier transfer mechanism (from QDs to the surface adsorbed metal ions or vice-versa), which is an interesting feature for metal ion detectivity.
Resumo:
We report the effect of dual beam excitation on the photoluminescence (PL) from PbS quantum dots in polyvinyl alcohol by using two excitation lasers, namely Ar+ (514.5 nm) and He-Ne laser (670 nm). Both sources of excitation gave similar PL spectra around 1.67 eV (related to shallow traps) and 1.1 eV (related to deep traps). When both lasers were used at the same time, we found that the PL induced by each of the lasers was partly quenched by the illumination of the other laser. The proposed mechanism of this quenching effect involves traps that are populated by one specific laser excitation, being photo-ionized by the presence of the other laser. Temperature, laser intensity and modulation frequency dependent quenching efficiencies are presented in this paper. This reversible modulation has potential for optical switching and memory device applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An organic-inorganic composite material is obtained by self-assembly of 2,3-didecyloxy-anthracene (DDOA), an organogelator of butanol, and organic-capped ZnO nanoparticles (NPs). The ligand 3, 2,3-di(6-oxy-n-hexanoic acid)-anthracene, designed to cap ZnO and interact with the DDOA nanofibers by structural similarity, improves the dispersion of the NPs into the organogel. The composite material displays mechanical properties similar to those of the pristine DDOA organogel, but gelates at a lower critical concentration and emits significantly less, even in the presence of very small amounts of ZnO NPs. The ligand 3 could also act as a relay to promote the photo-induced quenching process.
Resumo:
Self-assemblies between a linear Pt-based donor and ferrocene- chelated metallic acceptors produced novel heterometallic squares 4 and 5, which show fluorescence quenching upon the addition of nitro-aromatics.
Resumo:
The quest for novel two-dimensional materials has led to the discovery of hybrids where graphene and hexagonal boron nitride (h-BN) occur as phase-separated domains. Using first-principles calculations, we study the energetics and electronic and magnetic properties of such hybrids in detail. The formation energy of quantum dot inclusions (consisting of n carbon atoms) varies as 1/root n, owing to the interface. The electronic gap between the occupied and unoccupied energy levels of quantum dots is also inversely proportional to the length scale, 1/root n-a feature of confined Dirac fermions. For zigzag nanoroads, a combination of the intrinsic electric field caused by the polarity of the h-BN matrix and spin polarization at the edges results in half-metallicity; a band gap opens up under the externally applied ``compensating'' electric field. For armchair nanoroads, the electron confinement opens the gap, different among three subfamilies due to different bond length relaxations at the interfaces, and decreasing with the width.
Resumo:
A simple route for tailoring emissions in the visible wavelength region by chemically coupling quantum dots composed of ZnSe and CdS is reported. coupled quantum dots offer a novel route for tuning electronic transitions via band-offset engineering at the material interface. This novel class of asymmetric. coupled quantum structures may offer a basis for a diverse set of building blocks for optoelectronic devices, ultrahigh density memories, and quantum information processing.
Resumo:
Six disaccharide amphiphiles were synthesized and their hydrogel-forming behavior was extensively studied. These amphiphiles were based on maltose and lactose. Since the gels formed from some of these systems showed the ability to "trap" water molecules upon gelation, these gels were described as "hydrogels". When these gels were heated to similar to 70 degrees C, the samples turned into clear, isotropic fluids, and upon gradual cooling, the hydrogels could be reproduced. Thus these systems were also "thermoreversible". The low molecular mass (MW 565) of the gelators compared to that of a typical polymeric gelator forming substance implies pronounced aggregation of the disaccharide amphiphiles into larger microstructures during gelation. To discern the aggregate textures and morphologies, the specimen hydrogel samples were examined by high-resolution scanning electron microscopy (SEM). A possible reason for the exceptionally high water gelating capacities (>6000 molecules of water per gelator molecule) exhibited by these N-alkyl disaccharide amphiphiles is the presence of large interlamellar spaces into which the water molecules get entrapped due to surface tension. In contrast to their single-chain counterparts, the double-chain lactosyl and maltosylamine amphiphiles upon solubilization in EtOH-H2O afforded hydrogels with reduced mechanical strengths. Interestingly, the corresponding microstructures were found to be quite different from the corresponding hydrogels of their single-chain counterparts. Rheological studies provided further insights into the behavior of these hydrogels. Varying the chain length of the alcohol cosolvent could modulate the gelation capacities, melting temperatures, and the mechanical properties of these hydrogels. To explain the possible reasons of gelation, the results of molecular modeling and energy minimization studies were also included.
Resumo:
Surface orientation of self-assembled molecular films of 2,9,6,23-tetraamino cobalt phthalocyanine on gold and silver is shown to determine the nature and the products of the electrocatalytic reduction of oxygen.
Resumo:
The formation of molecular films of 2,9,16,23-tetraamino metal phthalocyanines [TAM(II)Pc; M (II) = Co, Cu, and TAM(III)Pc; M = Fe] by spontaneous adsorption on gold and silver surfaces is described. The properties of these films have been investigated by cyclic voltammetry, impedance, and FT-Raman spectroscopy. The charge associated with Co(II) and Co(I) redox couple in voltammetric data leads to a coverage of (0.35+/-0.05) x 10(-10) mol cm(-2), suggesting that the tetraamino cobalt phthalocyanine is adsorbed as a monolayer with an almost complete coverage. The blocking behavior of the films toward oxygen and Fe(CN)(6)(3-/4-) redox couple have been followed by cyclic voltammetry and impedance measurements. This leads to an estimate of the coverage of about 85 % in the case of copper and the iron analogs. FT-Raman studies show characteristic bands around 236 cm(-1) revealing the interaction between the metal substrate and the nitrogen of the -NH2 group on the phthalocyanine molecules.