973 resultados para sales force optimization
Resumo:
Work ability describes employees' capability to carry out their work with respect to physical and psychological job demands. This study investigated direct and interactive effects of age, job control, and the use of successful aging strategies called selection, optimization, and compensation (SOC) in predicting work ability. We assessed SOC strategies and job control by using employee self-reports, and we measured employees' work ability using supervisor ratings. Data collected from 173 health-care employees showed that job control was positively associated with work ability. Additionally, we found a three-way interaction effect of age, job control, and use of SOC strategies on work ability. Specifically, the negative relationship between age and work ability was weakest for employees with high job control and high use of SOC strategies. These results suggest that the use of successful aging strategies and enhanced control at work are conducive to maintaining the work ability of aging employees. We discuss theoretical and practical implications regarding the beneficial role of the use of SOC strategies utilized by older employees and enhanced contextual resources at work for aging employees.
Resumo:
This study investigated within-person relationships between daily problem solving demands, selection, optimization, and compensation (SOC) strategy use, job satisfaction, and fatigue at work. Based on conservation of resources theory, it was hypothesized that high SOC strategy use boosts the positive relationship between problem solving demands and job satisfaction, and buffers the positive relationship between problem solving demands and fatigue. Using a daily diary study design, data were collected from 64 administrative employees who completed a general questionnaire and two daily online questionnaires over four work days. Multilevel analyses showed that problem solving demands were positively related to fatigue, but unrelated to job satisfaction. SOC strategy use was positively related to job satisfaction, but unrelated to fatigue. A buffering effect of high SOC strategy use on the demands-fatigue relationship was found, but no booster effect on the demands-satisfaction relationship. The results suggest that high SOC strategy use is a resource that protects employees from the negative effects of high problem solving demands.
Resumo:
The concept of focus on opportunities describes how many new goals, options, and possibilities employees believe to have in their personal future at work. This study investigated the specific and shared effects of age, job complexity, and the use of successful aging strategies called selection, optimization, and compensation (SOC) in predicting focus on opportunities. Results of data collected from 133 employees of one company (mean age = 38 years, SD = 13, range 16–65 years) showed that age was negatively, and job complexity and use of SOC strategies were positively related to focus on opportunities. In addition, older employees in high-complexity jobs and older employees in low-complexity jobs with high use of SOC strategies were better able to maintain a focus on opportunities than older employees in low-complexity jobs with low use of SOC strategies.
Resumo:
The theory of selective optimization with compensation (SOC) proposes that the “orchestrated” use of three distinct action regulation strategies (selection, optimization, and compensation) leads to positive employee outcomes. Previous research examined overall scores and additive models (i.e., main effects) of SOC strategies instead of interaction models in which SOC strategies mutually enhance each other's effects. Thus, a central assumption of SOC theory remains untested. In addition, most research on SOC strategies has been cross-sectional, assuming that employees' use of SOC strategies is stable over time. We conducted a quantitative diary study across nine work days (N = 77; 514 daily entries) to investigate interactive effects of daily SOC strategies on daily work engagement. Results showed that optimization and compensation, but not selection, had positive main effects on work engagement. Moreover, a significant three-way interaction effect indicated that the relationship between selection and work engagement was positive only when both optimization and compensation were high, whereas the relationship was negative when optimization was low and compensation was high. We discuss implications for future research and practice regarding the use of SOC strategies at work.
Resumo:
This study examines the application of digital ecosystems concepts to a biological ecosystem simulation problem. The problem involves the use of a digital ecosystem agent to optimize the accuracy of a second digital ecosystem agent, the biological ecosystem simulation. The study also incorporates social ecosystems, with a technological solution design subsystem communicating with a science subsystem and simulation software developer subsystem to determine key characteristics of the biological ecosystem simulation. The findings show similarities between the issues involved in digital ecosystem collaboration and those occurring when digital ecosystems interact with biological ecosystems. The results also suggest that even precise semantic descriptions and comprehensive ontologies may be insufficient to describe agents in enough detail for use within digital ecosystems, and a number of solutions to this problem are proposed.
Resumo:
The rail-sleeper system is idealized as an infinite, periodic beam-mass system. Use is made of the periodicity principle for the semi-infinite halves on either side of the forcing point for evaluation of the wave propagation constants and the corresponding modal vectors. It is shown that the spread of acceleration away from the forcing point depends primarily upon one of the wave propagation constants. However, all the four modal vectors (two for the left-hand side and two for the right-hand side) determine the driving point impedance of the rail-sleeper system, which in combination with the driving point impedance of the wheel (which is adopted from the preceding companion paper) determines the forces generated by combined surface roughness and the resultant accelerations. The compound one-third octave acceleration levels generated by typical roughness spectra are generally of the same order as the observed levels.
Resumo:
In order to assess the structural reliability of bridges, an accurate and cost effective Non-Destructive Evaluation (NDE) technology is required to ensure their safe and reliable operation. Over 60% of the Australian National Highway System is prestressed concrete (PSC) bridges according to the Bureau of Transport and Communication Economics (1997). Most of the in-service bridges are more than 30 years old and may experience a heavier traffic load than their original intended level. Use of Ultrasonic waves is continuously increasing for (NDE) and Structural Health Monitoring (SHM) in civil, aerospace, electrical, mechanical applications. Ultrasonic Lamb waves are becoming more popular for NDE because it can propagate long distance and reach hidden regions with less energy loses. The purpose of this study is to numerically quantify prestress force (PSF) of (PSC) beam using the fundamental theory of acoustic-elasticity. A three-dimension finite element modelling approach is set up to perform parametric studies in order to better understand how the lamb wave propagation in PSC beam is affected by changing in the PSF level. Results from acoustic-elastic measurement on prestressed beam are presented, showing the feasibility of the lamb wave for PSF evaluation in PSC bridges.
Resumo:
In Sudan Chickpea chlorotic dwarf virus (CpCDV, genus Mastrevirus, family Geminiviridae) is an important pathogen of pulses that are grown both for local consumption, and for export. Although a few studies have characterised CpCDV genomes from countries in the Middle East, Africa and the Indian subcontinent, little is known about CpCDV diversity in any of the major chickpea production areas in these regions. Here we analyse the diversity of 146 CpCDV isolates characterised from pulses collected across the chickpea growing regions of Sudan. Although we find that seven of the twelve known CpCDV strains are present within the country, strain CpCDV-H alone accounted for ∼73% of the infections analysed. Additionally we identified four new strains (CpCDV-M, -N, -O and -P) and show that recombination has played a significant role in the diversification of CpCDV, at least in this region. Accounting for observed recombination events, we use the large amounts of data generated here to compare patterns of natural selection within protein coding regions of CpCDV and other dicot-infecting mastrevirus species.
Resumo:
The effect of gasket thickness on the pressure in the Bridgman anvil system has been studied experimentally. The existence of the optimum thickness from the experimental data has been interpreted in a theoretical model of stress distribution in an anvil system. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
Location management problem that arise in mobile computing networks is addressed. One method used in location management is to designate sonic of the cells in the network as "reporting cells". The other cells in the network are "non-reporting cells". Finding an optimal set of reporting cells (or reporting cell configuration) for a given network. is a difficult combinatorial optimization problem. In fact this is shown to be an NP-complete problem. in an earlier study. In this paper, we use the selective paging strategy and use an ant colony optimization method to obtain the best/optimal set of reporting cells for a given a network.
Resumo:
This study presents a comprehensive mathematical formulation model for a short-term open-pit mine block sequencing problem, which considers nearly all relevant technical aspects in open-pit mining. The proposed model aims to obtain the optimum extraction sequences of the original-size (smallest) blocks over short time intervals and in the presence of real-life constraints, including precedence relationship, machine capacity, grade requirements, processing demands and stockpile management. A hybrid branch-and-bound and simulated annealing algorithm is developed to solve the problem. Computational experiments show that the proposed methodology is a promising way to provide quantitative recommendations for mine planning and scheduling engineers.
Resumo:
Salinity gradient power is proposed as a source of renewable energy when two solutions of different salinity are mixed. In particular, Pressure Retarded Osmosis (PRO) coupled with a Reverse Osmosis process (RO) has been previously suggested for power generation, using RO brine as the draw solution. However, integration of PRO with RO may have further value for increasing the extent of water recovery in a desalination process. Consequently, this study was designed to model the impact of various system parameters to better understand how to design and operate practical PRO-RO units. The impact of feed salinity and recovery rate for the RO process on the concentration of draw solution, feed pressure, and membrane area of the PRO process was evaluated. The PRO system was designed to operate at maximum power density of . Model results showed that the PRO power density generated intensified with increasing seawater salinity and RO recovery rate. For an RO process operating at 52% recovery rate and 35 g/L feed salinity, a maximum power density of 24 W/m2 was achieved using 4.5 M NaCl draw solution. When seawater salinity increased to 45 g/L and the RO recovery rate was 46%, the PRO power density increased to 28 W/m2 using 5 M NaCl draw solution. The PRO system was able to increase the recovery rate of the RO by up to 18% depending on seawater salinity and RO recovery rate. This result suggested a potential advantage of coupling PRO process with RO system to increase the recovery rate of the desalination process and reduce brine discharge.
Resumo:
This paper is concerned with the reliability optimization of a spatially redundant system, subject to various constraints, by using nonlinear programming. The constrained optimization problem is converted into a sequence of unconstrained optimization problems by using a penalty function. The new problem is then solved by the conjugate gradient method. The advantages of this method are highlighted.