924 resultados para retinoic acid inducible protein I
Resumo:
Cancer cachexia causes metabolic alterations with a marked effect on hepatic lipid metabolism. l-Carnitine modulates lipid metabolism and its supplementation has been proposed as a therapeutic strategy in many diseases. In the present study, the effects of l-carnitine supplementation on gene expression and on liver lipid metabolism-related proteins was investigated in cachectic tumour-bearing rats. Wistar rats were assigned to receive 1 g/kg of l-carnitine or saline. After 14 days, supplemented and control animals were assigned to a control (N), control supplemented with l-carnitine (CN), tumour-bearing Walker 256 carcinosarcoma (TB) and tumour-bearing supplemented with l-carnitine (CTB) group. The mRNA expression of carnitine palmitoyltransferase I and II (CPT I and II), microsomal triglyceride transfer protein (MTP), liver fatty acid-binding protein (L-FABP), fatty acid translocase (FAT/CD36), peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and organic cation transporter 2 (OCTN2) was assessed, and the maximal activity of CPT I and II in the liver measured, along with plasma and liver triacylglycerol content. The gene expression of MTP, and CPT I catalytic activity were reduced in TB, who also showed increased liver (150%) and plasma (3.3-fold) triacylglycerol content. l-Carnitine supplementation was able to restore these parameters back to control values (p < 0.05). These data show that l-carnitine preserves hepatic lipid metabolism in tumour-bearing animals, suggesting its supplementation to be of potential interest in cachexia.
Resumo:
We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min-1·mg protein-1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.
Resumo:
Das ADAM10-Gen kodiert für eine membrangebundene Disintegrin-Metalloproteinase, die das Amyloidvorläuferprotein spaltet. Im Mausmodell konnte bewiesen werden, dass die Überexpression von ADAM10 die Plaquebildung vermindern und das Langzeitgedächtnis verbessert. Aus diesem Grund ist es für einen möglichen Therapieansatz für die Alzheimer’sche Erkrankung erforderlich, die Organisation des humanen ADAM10-Gens und seines Promotors aufzuklären. Beim Vergleich der genomischen Sequenzen von humanem und murinem ADAM10 zeigte sich eine hohe Übereinstimmung. Beide Gene umfassen 160 kbp und bestehen aus 16 Exons. Die ersten 500 bp stromaufwärts vom Translationsstartpunkt zwischen dem Menschen, der Maus und der Ratte sind hoch konserviert. Diese Region beinhaltet spezifische regulatorische Elemente, die die ADAM10-Transkription modulieren. In den ersten 2179 bp stromaufwärts vom humanen ADAM10-Translationsstartpunkt fanden sich einige potentiellen Transkriptionsfaktor-bindungsstellen (Brn-2, SREBP, Oct-1, Creb1/cJun, USF, Maz, MZF-1, NFkB und CDPCR3HD). Es wurde eine charakteristische GC-Box und eine CAAT-Box, aber keine TATA-Box identifiziert. Nach Klonierung dieser 2179 bp großen Region wurde eine starke Promotoraktivität, insbesondere in neuronalen Zelllinien, gefunden. Bei der Analyse von Deletionskonstrukten wurde die Region zwischen -508 und -300 als essentiell für die Transkriptionsaktivierung bestimmt. Die Promotoraktivität wird zudem streng herunterreguliert, wenn in die Region 317 bp stromaufwärts vom Startpunkt der Translation eine Punktmutation eingeführt wird. Diese per Computeranalyse als USF-Bindungsstelle deklarierte Region spielt eine zentrale Rolle bei der ADAM10-Transkription. Im EMSA wurde eine Protein-DNA-Interaktion für diese Region gezeigt. Durch transienten Transfektionen in Schneider Drosophila Insektenzellen konnte nachgewiesen werden, dass die Überexpression von Sp1 und USp3 für die ADAM10-Promotoraktivität entscheidend ist. In EMSA-Studien bestätigte sich eine Protein-DNA-Interaktion für die Region -366 bp stromaufwärts vom Translationsstartpunkt. Die Punktmutation in der CAAT-Box veränderte die die Promotoraktivität nicht. Da weiterhin für diese potentielle Bindungsstelle kein Bindungsfaktor vorausgesagt wurde, scheint die CAAT-Box keine Bedeutung bei der Promotorregulation zu spielen. Schließlich fand sich im EMSA eine Protein-DNA-Interaktion für die Bindungsstelle 203 bp stromaufwärts vom Translationsstartpunkt. Diese in Computeranalysen als RXR-Bindungsstelle identifizierte Region ist ebenfalls von Bedeutung in der Promotorregulation. Auf der Suche nach Substanzen, die die ADAM10-Promotoraktivität beeinflussen, wurde ein negativer Effekt durch die apoptoseauslösende Substanz Camptothecin und ein positiver Effekt durch die zelldifferenzierungsauslösende Substanz all-trans Retinsäure festgestellt. Mit dieser Arbeit wurde die genomische Organisation des ADAM10-Gens zusammen mit dem zugehörigen Promotor aufgeklärt und ein neuer Regulationsmechanismus für die Hochregulation der Expression der alpha-Sekretase ADAM10 gefunden. Im Weiteren sollen nun die genauen Mechanismen bei der Hochregulation der alpha-Sekretase ADAM10 durch Retinsäure untersucht und durch Mikroarray-Analysen an RNA-Proben transgener Mäuse, welche ADAM10 überexpremieren, neue therapeutische Ansätze zur Behandlung der Alzheimer´schen Erkrankung identifiziert werden.
Resumo:
La labioschisi con o senza palatoschisi non-sindromica (NSCL/P) è tra le più frequenti alterazioni dello sviluppo embrionale, causata dall’interazione di fattori genetici e ambientali, moti dei quali ancora ignoti. L'obiettivo del mio progetto di Dottorato consiste nell’identificazione di fattori di rischio genetico in un processo a due stadi che prevede la selezione di geni candidati e la verifica del loro coinvolgimento nella determinazione della malformazione mediante studi di associazione. Ho analizzato alcuni polimorfismi a singolo nucleotide (SNPs) dei geni RFC1 e DHFR, appartenenti alla via metabolica dell’acido folico, evidenziando una debole associazione tra alcuni degli SNPs indagati e la NSCL/P nella popolazione italiana. Presso il laboratorio della Dott.ssa Mangold dell’Università di Bonn, ho valutato il ruolo di 15 diverse regioni cromosomiche nel determinare la suscettibilità alla malattia, evidenziando una significativa associazione per i marcatori localizzati in 8q24 e 1p22. Ho quindi rivolto la mia attenzione al ruolo del complesso Polycomb nell’insorgenza della schisi. Nell’uomo i due complessi Polycomb, PRC1 e PRC2, rimodellano la cromatina agendo da regolatori dei meccanismi trascrizionali alla base della differenziazione cellulare e dello sviluppo embrionale. Ho ipotizzato che mutazioni a carico di geni appartenenti a PRC2 possano essere considerati potenziali fattori di rischio genetico nel determinare la NSCL/P. Il razionale consiste nel fatto che JARID2, una proteina che interagisce con PRC2, è associata all’insorgenza della NSCL/P ed espressa a livello delle cellule epiteliali delle lamine palatine che si approssimano alla fusione. L’indagine condotta analizzando i geni di elementi o partner dei due complessi Polycomb, ha evidenziato un’associazione significativa con alcuni polimorfismi dei geni indagati, associazione ulteriormente confermata dall’analisi degli aplotipi. Le analisi condotte sui geni candidati mi hanno permesso di raccogliere dati interessanti sull’eziologia della malformazione. Studi indipendenti saranno necessari per poter validare l'associazione tra le varianti genetiche di questi geni candidati e la NSCL/P.
Resumo:
Background: In protein sequence classification, identification of the sequence motifs or n-grams that can precisely discriminate between classes is a more interesting scientific question than the classification itself. A number of classification methods aim at accurate classification but fail to explain which sequence features indeed contribute to the accuracy. We hypothesize that sequences in lower denominations (n-grams) can be used to explore the sequence landscape and to identify class-specific motifs that discriminate between classes during classification. Discriminative n-grams are short peptide sequences that are highly frequent in one class but are either minimally present or absent in other classes. In this study, we present a new substitution-based scoring function for identifying discriminative n-grams that are highly specific to a class. Results: We present a scoring function based on discriminative n-grams that can effectively discriminate between classes. The scoring function, initially, harvests the entire set of 4- to 8-grams from the protein sequences of different classes in the dataset. Similar n-grams of the same size are combined to form new n-grams, where the similarity is defined by positive amino acid substitution scores in the BLOSUM62 matrix. Substitution has resulted in a large increase in the number of discriminatory n-grams harvested. Due to the unbalanced nature of the dataset, the frequencies of the n-grams are normalized using a dampening factor, which gives more weightage to the n-grams that appear in fewer classes and vice-versa. After the n-grams are normalized, the scoring function identifies discriminative 4- to 8-grams for each class that are frequent enough to be above a selection threshold. By mapping these discriminative n-grams back to the protein sequences, we obtained contiguous n-grams that represent short class-specific motifs in protein sequences. Our method fared well compared to an existing motif finding method known as Wordspy. We have validated our enriched set of class-specific motifs against the functionally important motifs obtained from the NLSdb, Prosite and ELM databases. We demonstrate that this method is very generic; thus can be widely applied to detect class-specific motifs in many protein sequence classification tasks. Conclusion: The proposed scoring function and methodology is able to identify class-specific motifs using discriminative n-grams derived from the protein sequences. The implementation of amino acid substitution scores for similarity detection, and the dampening factor to normalize the unbalanced datasets have significant effect on the performance of the scoring function. Our multipronged validation tests demonstrate that this method can detect class-specific motifs from a wide variety of protein sequence classes with a potential application to detecting proteome-specific motifs of different organisms.
Resumo:
The calculation of projection structures (PSs) from Protein Data Bank (PDB)-coordinate files of membrane proteins is not well-established. Reports on such attempts exist but are rare. In addition, the different procedures are barely described and thus difficult if not impossible to reproduce. Here we present a simple, fast and well-documented method for the calculation and visualization of PSs from PDB-coordinate files of membrane proteins: the projection structure visualization (PSV)-method. The PSV-method was successfully validated using the PS of aquaporin-1 (AQP1) from 2D crystals and cryo-transmission electron microscopy, and the PDB-coordinate file of AQP1 determined from 3D crystals and X-ray crystallography. Besides AQP1, which is a relatively rigid protein, we also studied a flexible membrane transport protein, i.e. the L-arginine/agmatine antiporter AdiC. Comparison of PSs calculated from the existing PDB-coordinate files of substrate-free and L-arginine-bound AdiC indicated that conformational changes are detected in projection. Importantly, structural differences were found between the PSV-method calculated PSs of the detergent-solubilized AdiC proteins and the PS from cryo-TEM of membrane-embedded AdiC. These differences are particularly exciting since they may reflect a different conformation of AdiC induced by the lateral pressure in the lipid bilayer.
Resumo:
The damage-regulator autophagy modulator 1 (DRAM-1) is a lysosomal protein that positively regulates autophagy in a p53-dependent manner. We aimed at analyzing the role of DRAM-1 in granulocytic differentiation of APL cells. We observed a significant increase of DRAM-1 expression during all-trans retinoic acid (ATRA)-induced neutrophil differentiation of NB4 APL cells but not in ATRA-resistant NB4-R2 cells. Next, knocking down DRAM-1 in NB4 APL cells was sufficient to impair neutrophil differentiation. Given that DRAM-1 is a transcriptional target of p53, we tested if DRAM-1 is regulated by the p53 relative p73. Indeed, inhibiting p73 prevented neutrophil differentiation and DRAM-1 induction of NB4 cells. In conclusion, we show for the first time that p73-regulated DRAM-1 is functionally involved in neutrophil differentiation of APL cells.
Resumo:
A new approach for the determination of free and total valproic acid in small samples of 140 μL human plasma based on capillary electrophoresis with contactless conductivity detection is proposed. A dispersive liquid-liquid microextraction technique was employed in order to remove biological matrices prior to instrumental analysis. The free valproic acid was determined by isolating free valproic acid from protein-bound valproic acid by ultrafiltration under centrifugation of 100 μL sample. The filtrate was acidified to turn valproic acid into its protonated neutral form and then extracted. The determination of total valproic acid was carried out by acidifying 40 μL untreated plasma to release the protein-bound valproic acid prior to extraction. A solution consisting of 10 mM histidine, 10 mM 3-(N-morpholino)propanesulfonic acid and 10 μM hexadecyltrimethylammonium bromide of pH 6.5 was used as background electrolyte for the electrophoretic separation. The method showed good linearity in the range of 0.4-300 μg/mL with a correlation coefficient of 0.9996. The limit of detection was 0.08 μg/mL, and the reproducibility of the peak area was excellent (RSD=0.7-3.5%, n=3, for the concentration range from 1 to 150 μg/mL). The results for the free and total valproic acid concentration in human plasma were found to be comparable to those obtained with a standard immunoassay. The corresponding correlation coefficients were 0.9847 for free and 0.9521 for total valproic acid.
Resumo:
Tightly regulated expression of the transcription factor PU.1 is crucial for normal hematopoiesis. PU.1 knockdown mice develop acute myeloid leukemia (AML), and PU.1 mutations have been observed in some populations of patients with AML. Here we found that conditional expression of promyelocytic leukemia-retinoic acid receptor alpha (PML-RARA), the protein encoded by the t(15;17) translocation found in acute promyelocytic leukemia (APL), suppressed PU.1 expression, while treatment of APL cell lines and primary cells with all-trans retinoic acid (ATRA) restored PU.1 expression and induced neutrophil differentiation. ATRA-induced activation was mediated by a region in the PU.1 promoter to which CEBPB and OCT-1 binding were induced. Finally, conditional expression of PU.1 in human APL cells was sufficient to trigger neutrophil differentiation, whereas reduction of PU.1 by small interfering RNA (siRNA) blocked ATRA-induced neutrophil differentiation. This is the first report to show that PU.1 is suppressed in acute promyelocytic leukemia, and that ATRA restores PU.1 expression in cells harboring t(15;17).
Resumo:
Adult-onset growth hormone (GH) deficiency (GHD) is associated with insulin resistance and decreased exercise capacity. Intramyocellular lipids (IMCL) depend on training status, diet, and insulin sensitivity. Using magnetic resonance spectroscopy, we studied IMCL content following physical activity (IMCL-depleted) and high-fat diet (IMCL-repleted) in 15 patients with GHD before and after 4 mo of GH replacement therapy (GHRT) and in 11 healthy control subjects. Measurements of insulin resistance and exercise capacity were performed and skeletal muscle biopsies were carried out to assess expression of mRNA of key enzymes involved in skeletal muscle lipid metabolism by real-time PCR and ultrastructure by electron microscopy. Compared with control subjects, patients with GHD showed significantly higher difference between IMCL-depleted and IMCL-repleted. GHRT resulted in an increase in skeletal muscle mRNA expression of IGF-I, hormone-sensitive lipase, and a tendency for an increase in fatty acid binding protein-3. Electron microscopy examination did not reveal significant differences after GHRT. In conclusion, variation of IMCL may be increased in patients with GHD compared with healthy control subjects. Qualitative changes within the skeletal muscle (i.e., an increase in free fatty acids availability from systemic and/or local sources) may contribute to the increase in insulin resistance and possibly to the improvement of exercise capacity after GHRT. The upregulation of IGF-I mRNA suggests a paracrine/autocrine role of IGF-I on skeletal muscle.
Resumo:
The basic leucine zipper transcription factor CCAAT/enhancer binding protein alpha (CEBPA) codes for a critical regulator during neutrophil differentiation. Aberrant expression or function of this protein contributes to the development of acute myeloid leukemia (AML). In this study, we identified two novel unrelated CEBPA target genes, the glycolytic enzyme hexokinase 3 (HK3) and the krüppel-like factor 5 (KLF5) transcription factor, by comparing gene profiles in two cohorts of CEBPA wild-type and mutant AML patients. In addition, we found CEBPA-dependent activation of HK3 and KLF5 transcription during all-trans retinoic acid (ATRA) mediated neutrophil differentiation of acute promyelocytic leukemia (APL) cells. Moreover, we observed direct regulation of HK3 by CEBPA, whereas our data suggest an indirect regulation of KLF5 by this transcription factor. Altogether, our data provide an explanation for low HK3 and KLF5 expression in particular AML subtype and establish these genes as novel CEBPA targets during neutrophil differentiation.
Resumo:
Poly(A)-binding protein (PABP) stimulates translation initiation by binding simultaneously to the mRNA poly(A) tail and eukaryotic translation initiation factor 4G (eIF4G). PABP activity is regulated by PABP-interacting (Paip) proteins. Paip1 binds PABP and stimulates translation by an unknown mechanism. Here, we describe the interaction between Paip1 and eIF3, which is direct, RNA independent, and mediated via the eIF3g (p44) subunit. Stimulation of translation by Paip1 in vivo was decreased upon deletion of the N-terminal sequence containing the eIF3-binding domain and upon silencing of PABP or several eIF3 subunits. We also show the formation of ternary complexes composed of Paip1-PABP-eIF4G and Paip1-eIF3-eIF4G. Taken together, these data demonstrate that the eIF3-Paip1 interaction promotes translation. We propose that eIF3-Paip1 stabilizes the interaction between PABP and eIF4G, which brings about the circularization of the mRNA.
Resumo:
In mammalian cells, mRNA decay begins with deadenylation, which involves two consecutive phases mediated by the PAN2-PAN3 and the CCR4-CAF1 complexes, respectively. The regulation of the critical deadenylation step and its relationship with RNA-processing bodies (P-bodies), which are thought to be a site where poly(A)-shortened mRNAs get degraded, are poorly understood. Using the Tet-Off transcriptional pulsing approach to investigate mRNA decay in mouse NIH 3T3 fibroblasts, we found that TOB, an antiproliferative transcription factor, enhances mRNA deadenylation in vivo. Results from glutathione S-transferase pull-down and coimmunoprecipitation experiments indicate that TOB can simultaneously interact with the poly(A) nuclease complex CCR4-CAF1 and the cytoplasmic poly(A)-binding protein, PABPC1. Combining these findings with those from mutagenesis studies, we further identified the protein motifs on TOB and PABPC1 that are necessary for their interaction and found that interaction with PABPC1 is necessary for TOB's deadenylation-enhancing effect. Moreover, our immunofluorescence microscopy results revealed that TOB colocalizes with P-bodies, suggesting a role of TOB in linking deadenylation to the P-bodies. Our findings reveal a new mechanism by which the fate of mammalian mRNA is modulated at the deadenylation step by a protein that recruits poly(A) nuclease(s) to the 3' poly(A) tail-PABP complex.
Resumo:
Using a human terato-carcinoma cell line, PA-1, the functional role of the oncogenes and tumor suppressor gene involved in the multistep process of carcinogenesis have been analyzed. The expression of AP-2 was strongly correlated with the susceptibility to ras transformation. The differential responsiveness to growth factors between stage 1 ras resistant cells and stage 2 ras susceptible cells was observed, indicating that the ability of stage 2 cells to respond to the mutated ras oncogenes in transformation correlated with the ability to be stimulated by certain growth factors. Using differential screening of cDNA libraries, a number of differentially expressed cDNA clones was isolated. One of those, clone 12, is overexpressed in ras transformed stage 3 cells. The amino acid sequence of clone 12 is almost identical to a mouse LLrep3 gene that was growth-regulated, and 78% similar to a yeast ribosomal protein S4. These results suggest that the S4 gene may be involved in regulation of growth. Clone 9 is expressed in stage 1 ras resistant cells (3.5-kb and 3.0-kb transcripts) but the expression of this clone in stage 2 ras susceptible cells and stage 3 ras-transformed cells is greatly diminished. The expression of this cDNA clone was increased to at least five fold in ras resistant cells and nontumorigenic hybrids treated with retinoic acid but not increased in retinoic acid treated ras susceptible cells, ras transformed cells and the tumorigenic segregants. Partial sequence of this clone showed no homology to the sequences in Genbank. These findings suggest that clone 9 could be a suppressor gene or the genes that are involved in the biochemical pathway of tumor suppression or neurogenic differentiation. The apparent pleiotropic effect of the loss of this suppressor gene function support Harris' proposal that tumor suppressor genes regulate differentiation. The tumor suppressor gene may act as negative regulator of tumor growth by controlling gene expression in differentiation. ^
Resumo:
In vitro, RecA protein catalyses the exchange of single strands of DNA between different DNA molecules with sequence complementarity. In order to gain insight into this complex reaction and the roles of ATP binding and hydrolysis, two different approaches have been taken. The first is to use short single-stranded deoxyoligonucleotides as the ssDNA in strand exchange. These were used to determine the signal for hydrolysis and the structure of the RecA-DNA complex that hydrolyses ATP. I present a defined kinetic analysis of the nucleotide triphosphatase activity of RecA protein using short oligonucleotides as ssDNA cofactor. I compare the effects of both homopolymers and mixed base composition oligomers on the ATPase activity of RecA protein. I examine the steady state kinetic parameters of the ATPase reaction using these oligonucleotides as ssDNA cofactor, and show that although RecA can both bind to, and utilise, oligonucleotides 7 to 20 residues in length to support the repressor cleavage activity of RecA, these oligonucleotides are unable to efficiently stimulate the ATPase activity of RecA protein. I show that the K$\sb{\rm m}\sp{\rm ATP}$, the Hill coefficient for ATP binding, the extent of reaction, and k$\sb{\rm cat}$ are all a function of ssDNA chain length and that secondary structure may also play a role in determining the effects of a particular chain length on the ATPase activity of RecA protein.^ The second approach is to utilise one of the many mutants of RecA to gain insight into this complex reaction. The mutant selected was RecA1332. Surprisingly, in vitro, this mutant possesses a DNA-dependent ATPase activity. The K$\sb{\rm m}\sp{\rm ATP}$, Hill coefficient for ATP binding, and K$\sb{\rm m}\sp{\rm DNA}$ are similar to that of wild type. k$\sb{\rm cat}$ for the ATPase activity is reduced 3 to 12-fold, however. RecA1332 is unable to use deoxyoligonucleotides as DNA cofactors in the ATPase reaction, and demonstrates an increased sensitivity to inhibition by monovalent ions. It is able to perform strand exchange with ATP and ATP$\lbrack\gamma\rbrack$S but not with UTP, whereas the wild type protein is able to use all three nucleotide triphosphates. RecA1332 appears to be slowed in its ability to form intermediates and to convert these intermediates to products. (Abstract shortened by UMI.) ^