968 resultados para reserve-S
Resumo:
In the early 1990's, outline designs for two wetland nature reserves were being prepared: the Teeside International Nature Reserve (TINR) and the Cardiff Bay Barrage Environmental Compensation Measures at Redwick, Gwent. The initial design for both proposals identified reedbed as a desirable habitat for establishment. The initial design works identified the importance of reedbed evapotranspiration [ET(Reed)] within the water budget, however, literature searches identified a paucity of information on this parameter. Field experiments for the measurement of ET(Reed) from Phragmites australis are described for three sites distributed across England and Wales. Reference Crop Evapotranspiration (ETo) was calculated using techniques recommended by the Food and Agriculture Organisation. A technique for the calculation of a reedbed crop coefficient [Kc(Reed)[, from ET(Reed) and ETo data is discussed. Kc(Reed) values produced in the project were found to be similar to those developed previously in continental Europe. Mean monthly and crop development stage Kc(Reed) values are presented which are applicable in the UK and possibly worldwide. A conceptual hydrological model of surface water fed reedbed systems is developed, and used to calculate the hydrological sustainability of reedbed creation areas in the UK. Finally, the water budget model is verified using data from a small clay catchment located on the TINR. In addition, a methodology is developed for the hydrological design of surface water fed reedbed systems, and recommendations required for the feasibility, design and establishment stage of reedbed creation sites. Further research needs are also identified.
Resumo:
Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved. Acknowledgements The Aberdeen birth Cohort Studies were established with grants to Lawrence Whalley by the Henry Smith Charity, the UK Biotechnology and Biological Sciences Research Council and a Professorial Clinical Fellowship Award from the Wellcome Trust. The imaging studies reported here were supported by grants to all three authors by the Chief Scientist Organisation of the Scottish Health Department and Alzheimer Research UK. We are grateful to the volunteers in the Aberdeen 1921 and 1936 Birth Cohort Studies and to our research colleagues in the Aberdeen biomedical Imaging Centre (Drs. Ahearn, Waiter, and Mustafa) and our long-term collaborators in the University of Edinburgh (Professors Deary and Starr at www.ccace.ed.ac.uk).
Resumo:
Data of amphibians, reptiles and birds surveyed from February 2016 to May 2016 in the UNESCO Sheka forest biosphere reserve are provided as an online open access data file.
Resumo:
Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications.
Resumo:
Penetration of fractional flow reserve (FFR) in clinical practice varies extensively, and the applicability of results from randomized trials is understudied. We describe the extent to which the information gained from routine FFR affects patient management strategy and clinical outcome. METHODS AND RESULTS: Nonselected patients undergoing coronary angiography, in which at least 1 lesion was interrogated by FFR, were prospectively enrolled in a multicenter registry. FFR-driven change in management strategy (medical therapy, revascularization, or additional stress imaging) was assessed per-lesion and per-patient, and the agreement between final and initial strategies was recorded. Cardiovascular death, myocardial infarction, or unplanned revascularization (MACE) at 1 year was recorded. A total of 1293 lesions were evaluated in 918 patients (mean FFR, 0.81±0.1). Management plan changed in 406 patients (44.2%) and 584 lesions (45.2%). One-year MACE was 6.9%; patients in whom all lesions were deferred had a lower MACE rate (5.3%) than those with at least 1 lesion revascularized (7.3%) or left untreated despite FFR≤0.80 (13.6%; log-rank P=0.014). At the lesion level, deferral of those with an FFR≤0.80 was associated with a 3.1-fold increase in the hazard of cardiovascular death/myocardial infarction/target lesion revascularization (P=0.012). Independent predictors of target lesion revascularization in the deferred lesions were proximal location of the lesion, B2/C type and FFR. CONCLUSIONS: Routine FFR assessment of coronary lesions safely changes management strategy in almost half of the cases. Also, it accurately identifies patients and lesions with a low likelihood of events, in which revascularization can be safely deferred, as opposed to those at high risk when ischemic lesions are left untreated, thus confirming results from randomized trials.
Resumo:
The California sea otter population is gradually expanding in size and geographic range and is consequently invading new feeding grounds, including bays and estuaries that are home to extensive populations of bivalve prey. One such area is the Elkhorn Slough, where otters have apparently established a spring and summer communal feeding and resting area. In anticipation of future otter foraging in the slough, an extensive baseline database on bivalve densities, size distributions, biomasses, and burrow depths has been established for three potential bivalve prey species, Saxidomus nuttalli, Tresus nutallii, and Zirphaea pilsbryi. In 1986, the Elkhorn Slough otters were foraging predominately at two areas immediately east and west of the Highway 1 bridge (Skipper's and the PG&E Outfall). Extensive subtidal populations of Saxidomus nuttalli and Tresus nuttallii occur in these areas. Shell records collected at these study areas indicated that sea otters were foraging selectively on Saxidomus over Tresus. The reason for this apparent preference was not clear. At the Skipper's study site, 51% of the shell record was composed of Saxidomus, yet this species accounted for only 16% of the in situ biomass, and only 39% of the available clams. Tresus represented 49% of the shell record at Skipper's, yet this species accounted for 84% of the in situ biomass and 61% of the available clams. There was no difference in mean burrow depth between the two species at this site so availability does not explain the disparity in consumption. At the PG&E Outfall, Saxidomus represents 66% of the in situ biomass and 81% of the available clams, while Tresus accounts for 34% of the in situ biomass and 19% of the available clams. Saxidomus accounts for 96% of the shell record at this site vs. 4% for Tresus, again indicating that the otters were preying on Saxidomus out of proportion to their density or biomass. High densities and biomasses of a third species, Zirphaea pilsbryi, occur in areas where sea otters were observed to be foraging, yet no cast-off Zirphaea shells were found. Although it is possible this species was not represented in the shell record because the otters were simply chewing up the shells, it is more likely this species is avoided by sea otters. There were relatively few sea otters in the Elkhorn Slough in 1986 compared to the previous two years. This, coupled with high bivalve densities, precluded any quantitative comparison of bivalve densities before and after the 1986 sea otter occupation. Qualitative observations made during the course of this study, and quantitative observations from previous studies indicate that, after 3 years, sea otters are not yet significantly affecting bivalve densities in the Elkhorn Slough.