971 resultados para relative utility models
Resumo:
Understanding the population structure and patterns of gene flow within species is of fundamental importance to the study of evolution. In the fields of population and evolutionary genetics, measures of genetic differentiation are commonly used to gather this information. One potential caveat is that these measures assume gene flow to be symmetric. However, asymmetric gene flow is common in nature, especially in systems driven by physical processes such as wind or water currents. As information about levels of asymmetric gene flow among populations is essential for the correct interpretation of the distribution of contemporary genetic diversity within species, this should not be overlooked. To obtain information on asymmetric migration patterns from genetic data, complex models based on maximum-likelihood or Bayesian approaches generally need to be employed, often at great computational cost. Here, a new simpler and more efficient approach for understanding gene flow patterns is presented. This approach allows the estimation of directional components of genetic divergence between pairs of populations at low computational effort, using any of the classical or modern measures of genetic differentiation. These directional measures of genetic differentiation can further be used to calculate directional relative migration and to detect asymmetries in gene flow patterns. This can be done in a user-friendly web application called divMigrate-online introduced in this study. Using simulated data sets with known gene flow regimes, we demonstrate that the method is capable of resolving complex migration patterns under a range of study designs.
Resumo:
The identification of subjects at high risk for Alzheimer’s disease is important for prognosis and early intervention. We investigated the polygenic architecture of Alzheimer’s disease and the accuracy of Alzheimer’s disease prediction models, including and excluding the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and 37 154 controls obtained from the International Genomics of Alzheimer’s Project (IGAP). Polygenic score analysis tested whether the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and 1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component enriched in Alzheimer’s disease (P = 4.9 × 10−26). This enrichment remained significant after APOE and other genome-wide associated regions were excluded (P = 3.4 × 10−19). The best prediction accuracy AUC = 78.2% (95% confidence interval 77–80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion, Alzheimer’s disease has a significant polygenic component, which has predictive utility for Alzheimer’s disease risk and could be a valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case prediction from chance with increased prediction at polygenic extremes.
Resumo:
Ma thèse s’intéresse aux politiques de santé conçues pour encourager l’offre de services de santé. L’accessibilité aux services de santé est un problème majeur qui mine le système de santé de la plupart des pays industrialisés. Au Québec, le temps médian d’attente entre une recommandation du médecin généraliste et un rendez-vous avec un médecin spécialiste était de 7,3 semaines en 2012, contre 2,9 semaines en 1993, et ceci malgré l’augmentation du nombre de médecins sur cette même période. Pour les décideurs politiques observant l’augmentation du temps d’attente pour des soins de santé, il est important de comprendre la structure de l’offre de travail des médecins et comment celle-ci affecte l’offre des services de santé. Dans ce contexte, je considère deux principales politiques. En premier lieu, j’estime comment les médecins réagissent aux incitatifs monétaires et j’utilise les paramètres estimés pour examiner comment les politiques de compensation peuvent être utilisées pour déterminer l’offre de services de santé de court terme. En second lieu, j’examine comment la productivité des médecins est affectée par leur expérience, à travers le mécanisme du "learning-by-doing", et j’utilise les paramètres estimés pour trouver le nombre de médecins inexpérimentés que l’on doit recruter pour remplacer un médecin expérimenté qui va à la retraite afin de garder l’offre des services de santé constant. Ma thèse développe et applique des méthodes économique et statistique afin de mesurer la réaction des médecins face aux incitatifs monétaires et estimer leur profil de productivité (en mesurant la variation de la productivité des médecins tout le long de leur carrière) en utilisant à la fois des données de panel sur les médecins québécois, provenant d’enquêtes et de l’administration. Les données contiennent des informations sur l’offre de travail de chaque médecin, les différents types de services offerts ainsi que leurs prix. Ces données couvrent une période pendant laquelle le gouvernement du Québec a changé les prix relatifs des services de santé. J’ai utilisé une approche basée sur la modélisation pour développer et estimer un modèle structurel d’offre de travail en permettant au médecin d’être multitâche. Dans mon modèle les médecins choisissent le nombre d’heures travaillées ainsi que l’allocation de ces heures à travers les différents services offerts, de plus les prix des services leurs sont imposés par le gouvernement. Le modèle génère une équation de revenu qui dépend des heures travaillées et d’un indice de prix représentant le rendement marginal des heures travaillées lorsque celles-ci sont allouées de façon optimale à travers les différents services. L’indice de prix dépend des prix des services offerts et des paramètres de la technologie de production des services qui déterminent comment les médecins réagissent aux changements des prix relatifs. J’ai appliqué le modèle aux données de panel sur la rémunération des médecins au Québec fusionnées à celles sur l’utilisation du temps de ces mêmes médecins. J’utilise le modèle pour examiner deux dimensions de l’offre des services de santé. En premierlieu, j’analyse l’utilisation des incitatifs monétaires pour amener les médecins à modifier leur production des différents services. Bien que les études antérieures ont souvent cherché à comparer le comportement des médecins à travers les différents systèmes de compensation,il y a relativement peu d’informations sur comment les médecins réagissent aux changementsdes prix des services de santé. Des débats actuels dans les milieux de politiques de santé au Canada se sont intéressés à l’importance des effets de revenu dans la détermination de la réponse des médecins face à l’augmentation des prix des services de santé. Mon travail contribue à alimenter ce débat en identifiant et en estimant les effets de substitution et de revenu résultant des changements des prix relatifs des services de santé. En second lieu, j’analyse comment l’expérience affecte la productivité des médecins. Cela a une importante implication sur le recrutement des médecins afin de satisfaire la demande croissante due à une population vieillissante, en particulier lorsque les médecins les plus expérimentés (les plus productifs) vont à la retraite. Dans le premier essai, j’ai estimé la fonction de revenu conditionnellement aux heures travaillées, en utilisant la méthode des variables instrumentales afin de contrôler pour une éventuelle endogeneité des heures travaillées. Comme instruments j’ai utilisé les variables indicatrices des âges des médecins, le taux marginal de taxation, le rendement sur le marché boursier, le carré et le cube de ce rendement. Je montre que cela donne la borne inférieure de l’élasticité-prix direct, permettant ainsi de tester si les médecins réagissent aux incitatifs monétaires. Les résultats montrent que les bornes inférieures des élasticités-prix de l’offre de services sont significativement positives, suggérant que les médecins répondent aux incitatifs. Un changement des prix relatifs conduit les médecins à allouer plus d’heures de travail au service dont le prix a augmenté. Dans le deuxième essai, j’estime le modèle en entier, de façon inconditionnelle aux heures travaillées, en analysant les variations des heures travaillées par les médecins, le volume des services offerts et le revenu des médecins. Pour ce faire, j’ai utilisé l’estimateur de la méthode des moments simulés. Les résultats montrent que les élasticités-prix direct de substitution sont élevées et significativement positives, représentant une tendance des médecins à accroitre le volume du service dont le prix a connu la plus forte augmentation. Les élasticitésprix croisées de substitution sont également élevées mais négatives. Par ailleurs, il existe un effet de revenu associé à l’augmentation des tarifs. J’ai utilisé les paramètres estimés du modèle structurel pour simuler une hausse générale de prix des services de 32%. Les résultats montrent que les médecins devraient réduire le nombre total d’heures travaillées (élasticité moyenne de -0,02) ainsi que les heures cliniques travaillées (élasticité moyenne de -0.07). Ils devraient aussi réduire le volume de services offerts (élasticité moyenne de -0.05). Troisièmement, j’ai exploité le lien naturel existant entre le revenu d’un médecin payé à l’acte et sa productivité afin d’établir le profil de productivité des médecins. Pour ce faire, j’ai modifié la spécification du modèle pour prendre en compte la relation entre la productivité d’un médecin et son expérience. J’estime l’équation de revenu en utilisant des données de panel asymétrique et en corrigeant le caractère non-aléatoire des observations manquantes à l’aide d’un modèle de sélection. Les résultats suggèrent que le profil de productivité est une fonction croissante et concave de l’expérience. Par ailleurs, ce profil est robuste à l’utilisation de l’expérience effective (la quantité de service produit) comme variable de contrôle et aussi à la suppression d’hypothèse paramétrique. De plus, si l’expérience du médecin augmente d’une année, il augmente la production de services de 1003 dollar CAN. J’ai utilisé les paramètres estimés du modèle pour calculer le ratio de remplacement : le nombre de médecins inexpérimentés qu’il faut pour remplacer un médecin expérimenté. Ce ratio de remplacement est de 1,2.
Resumo:
Recent developments in the physical parameterizations available in spectral wave models have already been validated, but there is little information on their relative performance especially with focus on the higher order spectral moments and wave partitions. This study concentrates on documenting their strengths and limitations using satellite measurements, buoy spectra, and a comparison between the different models. It is confirmed that all models perform well in terms of significant wave heights; however higher-order moments have larger errors. The partition wave quantities perform well in terms of direction and frequency but the magnitude and directional spread typically have larger discrepancies. The high-frequency tail is examined through the mean square slope using satellites and buoys. From this analysis it is clear that some models behave better than the others, suggesting their parameterizations match the physical processes reasonably well. However none of the models are entirely satisfactory, pointing to poorly constrained parameterizations or missing physical processes. The major space-time differences between the models are related to the swell field stressing the importance of describing its evolution. An example swell field confirms the wave heights can be notably different between model configurations while the directional distributions remain similar. It is clear that all models have difficulty in describing the directional spread. Therefore, knowledge of the source term directional distributions is paramount in improving the wave model physics in the future.
Resumo:
The main purpose of this study is to present an alternative benchmarking approach that can be used by national regulators of utilities. It is widely known that the lack of sizeable data sets limits the choice of the benchmarking method and the specification of the model to set price controls within incentive-based regulation. Ill-posed frontier models are the problem that some national regulators have been facing. Maximum entropy estimators are useful in the estimation of such ill-posed models, in particular in models exhibiting small sample sizes, collinearity and non-normal errors, as well as in models where the number of parameters to be estimated exceeds the number of observations available. The empirical study involves a sample data used by the Portuguese regulator of the electricity sector to set the parameters for the electricity distribution companies in the regulatory period of 2012-2014. DEA and maximum entropy methods are applied and the efficiency results are compared.
Resumo:
Crop models are simplified mathematical representations of the interacting biological and environmental components of the dynamic soil–plant–environment system. Sorghum crop modeling has evolved in parallel with crop modeling capability in general, since its origins in the 1960s and 1970s. Here we briefly review the trajectory in sorghum crop modeling leading to the development of advanced models. We then (i) overview the structure and function of the sorghum model in the Agricultural Production System sIMulator (APSIM) to exemplify advanced modeling concepts that suit both agronomic and breeding applications, (ii) review an example of use of sorghum modeling in supporting agronomic management decisions, (iii) review an example of the use of sorghum modeling in plant breeding, and (iv) consider implications for future roles of sorghum crop modeling. Modeling and simulation provide an avenue to explore consequences of crop management decision options in situations confronted with risks associated with seasonal climate uncertainties. Here we consider the possibility of manipulating planting configuration and density in sorghum as a means to manipulate the productivity–risk trade-off. A simulation analysis of decision options is presented and avenues for its use with decision-makers discussed. Modeling and simulation also provide opportunities to improve breeding efficiency by either dissecting complex traits to more amenable targets for genetics and breeding, or by trait evaluation via phenotypic prediction in target production regions to help prioritize effort and assess breeding strategies. Here we consider studies on the stay-green trait in sorghum, which confers yield advantage in water-limited situations, to exemplify both aspects. The possible future roles of sorghum modeling in agronomy and breeding are discussed as are opportunities related to their synergistic interaction. The potential to add significant value to the revolution in plant breeding associated with genomic technologies is identified as the new modeling frontier.
Resumo:
Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector's life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis' life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector-based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
Energy Conservation Measure (ECM) project selection is made difficult given real-world constraints, limited resources to implement savings retrofits, various suppliers in the market and project financing alternatives. Many of these energy efficient retrofit projects should be viewed as a series of investments with annual returns for these traditionally risk-averse agencies. Given a list of ECMs available, federal, state and local agencies must determine how to implement projects at lowest costs. The most common methods of implementation planning are suboptimal relative to cost. Federal, state and local agencies can obtain greater returns on their energy conservation investment over traditional methods, regardless of the implementing organization. This dissertation outlines several approaches to improve the traditional energy conservations models. Any public buildings in regions with similar energy conservation goals in the United States or internationally can also benefit greatly from this research. Additionally, many private owners of buildings are under mandates to conserve energy e.g., Local Law 85 of the New York City Energy Conservation Code requires any building, public or private, to meet the most current energy code for any alteration or renovation. Thus, both public and private stakeholders can benefit from this research. The research in this dissertation advances and presents models that decision-makers can use to optimize the selection of ECM projects with respect to the total cost of implementation. A practical application of a two-level mathematical program with equilibrium constraints (MPEC) improves the current best practice for agencies concerned with making the most cost-effective selection leveraging energy services companies or utilities. The two-level model maximizes savings to the agency and profit to the energy services companies (Chapter 2). An additional model presented leverages a single congressional appropriation to implement ECM projects (Chapter 3). Returns from implemented ECM projects are used to fund additional ECM projects. In these cases, fluctuations in energy costs and uncertainty in the estimated savings severely influence ECM project selection and the amount of the appropriation requested. A risk aversion method proposed imposes a minimum on the number of “of projects completed in each stage. A comparative method using Conditional Value at Risk is analyzed. Time consistency was addressed in this chapter. This work demonstrates how a risk-based, stochastic, multi-stage model with binary decision variables at each stage provides a much more accurate estimate for planning than the agency’s traditional approach and deterministic models. Finally, in Chapter 4, a rolling-horizon model allows for subadditivity and superadditivity of the energy savings to simulate interactive effects between ECM projects. The approach makes use of inequalities (McCormick, 1976) to re-express constraints that involve the product of binary variables with an exact linearization (related to the convex hull of those constraints). This model additionally shows the benefits of learning between stages while remaining consistent with the single congressional appropriations framework.
Resumo:
Macro and micro-economic perspectives are combined in an eco- nomic growth model. An agent-based modeling approach is used to develop an overlapping generation framework where endogenous growth is supported by work- ers that decide to study depending on their relative (skilled and unskilled) indi- vidual satisfaction. The micro perspective is based on individual satisfaction: an utility function computed from the variation of the relative income in both space and time. The macro perspective emerges from micro decisions, and, as in other growth models of this type, concerns an important allocative social decision the share of the working population that is engaged in producing ideas (skilled work- ers). Simulations show that production and satisfaction levels are higher when the evolution of income measured in both space and time are equally weighted.
Resumo:
Purpose: To investigate the pathogenesis of high fat diet (HFD)-induced hyperlipidemia (HLP) in mice, rats and hamsters and to comparatively evaluate their sensitivity to HFD. Methods: Mice, rats and hamsters were fed with high-fat diet formulation (HFD, n = 8) or a control diet (control, n = 8) for 4 weeks. Changes in body weight, relative liver weight, serum lipid profile, expressions of hepatic marker gene of lipid metabolism and liver morphology were observed in three hyperlipidemic models. Results: Elevated total cholesterol (TC), triglyceride, low density lipoprotein-cholesterol (LDL-C) and high density lipoprotein-cholesterol (HDL-C) levels and body weight were observed in all hyperlipidemic animals (p < 0.05), while hepatic steatosis was manifested in rat and hamster HLP models, and increased hepatic TC level was only seen (p < 0.05) in hamster HLP model. Suppression of HMG-CoA reductase and up-regulation of lipoproteinlipase were observed in all HFD groups. Hepatic gene expression of LDLR, CYP7A1, LCAT, SR-B1, and ApoA I, which are a response to reverse cholesterol transport (RCT), were inhibited by HFD in the three models. Among these models, simultaneous suppression of HMG-CR, LCAT, LDLR and SR-BI and elevated LPL were features of the hamster model. Conclusion: As the results show, impaired RCT and excessive fat accumulation are major contributors to pathogenesis of HFD-induced murine HLP. Thus, the hamster model is more appropriate for hyperlipidemia research.
Resumo:
The application of 3D grain-based modelling techniques is investigated in both small and large scale 3DEC models, in order to simulate brittle fracture processes in low-porosity crystalline rock. Mesh dependency in 3D grain-based models (GBMs) is examined through a number of cases to compare Voronoi and tetrahedral grain assemblages. Various methods are used in the generation of tessellations, each with a number of issues and advantages. A number of comparative UCS test simulations capture the distinct failure mechanisms, strength profiles, and progressive damage development using various Voronoi and tetrahedral GBMs. Relative calibration requirements are outlined to generate similar macro-strength and damage profiles for all the models. The results confirmed a number of inherent model behaviors that arise due to mesh dependency. In Voronoi models, inherent tensile failure mechanisms are produced by internal wedging and rotation of Voronoi grains. This results in a combined dependence on frictional and cohesive strength. In tetrahedral models, increased kinematic freedom of grains and an abundance of straight, connected failure pathways causes a preference for shear failure. This results in an inability to develop significant normal stresses causing cohesional strength dependence. In general, Voronoi models require high relative contact tensile strength values, with lower contact stiffness and contact cohesional strength compared to tetrahedral tessellations. Upscaling of 3D GBMs is investigated for both Voronoi and tetrahedral tessellations using a case study from the AECL’s Mine-by-Experiment at the Underground Research Laboratory. An upscaled tetrahedral model was able to reasonably simulate damage development in the roof forming a notch geometry by adjusting the cohesive strength. An upscaled Voronoi model underestimated the damage development in the roof and floor, and overestimated the damage in the side-walls. This was attributed to the discretization resolution limitations.
Resumo:
Time series of commercial landings from the Algarve (southern Portugal) from 1982 to 1999 were analyzed using min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA). These techniques were used to identify trends and explore the relationships between the response variables (annual landings of 12 species) and explanatory variables [sea surface temperature, rainfall, an upwelling index, Guadiana river (south-east Portugal) flow, the North Atlantic oscillation, the number of licensed fishing vessels and the number of commercial fishermen]. Landings were more highly correlated with non-lagged environmental variables and in particular with Guadiana river flow. Both techniques gave coherent results, with the most important trend being a steady decline over time. A DFA model with two explanatory variables (Guadiana river flow and number of fishermen) and three common trends (smoothing functions over time) gave good fits to 10 of the 12 species. Results of other models indicated that river flow is the more important explanatory variable in this model. Changes in the mean flow and discharge regime of the Guadiana river resulting from the construction of the Alqueva dam, completed in 2002, are therefore likely to have a significant and deleterious impact on Algarve fisheries landings.
Resumo:
DEA models have been applied as the benchmarking tool in operations management to empirically account operational and productive efficiency. The wide flexibility in assigning the weights in DEA approach can result on indicators of efficiency who do not take account the relative importance of some inputs. In order to overcome this limitation, in this research we apply the DEA model under restricted weight specification. This model is applied to Spanish hotel companies in order to measure operational efficiency. The restricted weight specification enables us to decrease the influence of assigning unrealistic weights in some units and improve the efficiency estimation and to increase the discriminating potential of the conventional DEA model.
Resumo:
Species distribution and ecological niche models are increasingly used in biodiversity management and conservation. However, one thing that is important but rarely done is to follow up on the predictive performance of these models over time, to check if their predictions are fulfilled and maintain accuracy, or if they apply only to the set in which they were produced. In 2003, a distribution model of the Eurasian otter (Lutra lutra) in Spain was published, based on the results of a country-wide otter survey published in 1998. This model was built with logistic regression of otter presence-absence in UTM 10 km2 cells on a diverse set of environmental, human and spatial variables, selected according to statistical criteria. Here we evaluate this model against the results of the most recent otter survey, carried out a decade later and after a significant expansion of the otter distribution area in this country. Despite the time elapsed and the evident changes in this species’ distribution, the model maintained a good predictive capacity, considering both discrimination and calibration measures. Otter distribution did not expand randomly or simply towards vicinity areas,m but specifically towards the areas predicted as most favourable by the model based on data from 10 years before. This corroborates the utility of predictive distribution models, at least in the medium term and when they are made with robust methods and relevant predictor variables.