977 resultados para quantum confinement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of unitary noise on the discrete one-dimensional quantum walk is studied using computer simulations. For the noiseless quantum walk, starting at the origin (n=0) at time t=0, the position distribution P-t(n) at time t is very different from the Gaussian distribution obtained for the classical random walk. Furthermore, its standard deviation, sigma(t) scales as sigma(t)similar tot, unlike the classical random walk for which sigma(t)similar toroott. It is shown that when the quantum walk is exposed to unitary noise, it exhibits a crossover from quantum behavior for short times to classical-like behavior for long times. The crossover time is found to be Tsimilar toalpha(-2), where alpha is the standard deviation of the noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Future directions in this field are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently developed a scaleable Artificial Boundary Inhomogeneity (ABI) method [Chem. Phys. Lett.366, 390–397 (2002)] based on the utilization of the Lanczos algorithm, and in this work explore an alternative iterative implementation based on the Chebyshev algorithm. Detailed comparisons between the two iterative methods have been made in terms of efficiency as well as convergence behavior. The Lanczos subspace ABI method was also further improved by the use of a simpler three-term backward recursion algorithm to solve the subspace linear system. The two different iterative methods are tested on the model collinear H+H2 reactive state-to-state scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the experimental demonstration of quantum teleportation of the quadrature amplitudes of a light field. Our experiment was stably locked for long periods, and was analyzed in terms of fidelity F and with signal transfer T-q=T++T- and noise correlation V-q=Vinparallel to out+Vinparallel to out-. We observed an optimum fidelity of 0.64+/-0.02, T-q=1.06+/-0.02, and V-q=0.96+/-0.10. We discuss the significance of both T-q>1 and V-q

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of experiments recently performed are reported, in which two optical parametric amplifiers were set up to generate two independently quadrature squeezed continuous wave laser beams. The transformation of quadrature squeezed states into polarization squeezed states and into states with spatial quantum correlations is demonstrated. By utilizing two squeezed laser beams, a polarization squeezed state exhibiting three simultaneously squeezed Stokes operator variances was generated. Continuous variable polarization entanglement was generated and the Einstein-Podolsky-Rosen paradox was observed. A pair of Stokes operators satisfied both the inseparability criterion and the conditional variance criterion. Values of 0.49 and 0.77, respectively, were observed, with entanglement requiring values below unity. The inseparability measure of the observed quadrature entanglement was 0.44. This value is sufficient for a demonstration of quantum teleportation, which is the next experimental goal of the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-Langevin approach. We show that the simplified quantum Langevin equations for this system are mathematically identical to those of the nondegenerate optical parametric oscillator in the time domain with the following associations: pump pump, Stokes signal, and Raman coherence idler. We derive analytical results for both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent agreement with experimental observations. The analytical time-dependent results predict perfect photon statistics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a refinement of the standard continuous variable teleportation measurement and displacement strategies. This refinement makes use of prior knowledge about the target state and the partial information carried by the classical channel when entanglement is nonmaximal. This gives an improvement in the output quality of the protocol. The strategies we introduce could be used in current continuous variable teleportation experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate coherent electron transport through a parallel circuit of two quantum dots (QDs), each of which has a single tunable. energy level. Electrons tunnelling via each dot from the left lead interfere with each other at the right lead. It is shown that due to the quantum interference of tunnelling electrons the double QD device is magnetically polarized by coherent circulation of electrons on the closed path through the dots and the leads. By varying the energy level of each dot one can make the magnetic states of the device be up-, non- or down-polarized. It is shown that for experimentally accessible temperatures and applied biases the magnetic polarization currents Should be sufficiently large to observe with current nanotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a double colour laser scanned photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the colour detection process are analysed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a Double Color Laser Scanned Photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the color detection process are analyzed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Biotecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain a Ph.D. Degree in Chemical Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Nanotechnology has the potential to provide agriculture with new tools that may be used in the rapid detection and molecular treatment of diseases and enhancement of plant ability to absorb nutrients, among others. Data on nanoparticle toxicity in plants is largely heterogeneous with a diversity of physicochemical parameters reported, which difficult generalizations. Here a cell biology approach was used to evaluate the impact of Quantum Dots (QDs) nanocrystals on plant cells, including their effect on cell growth, cell viability, oxidative stress and ROS accumulation, besides their cytomobility. Results: A plant cell suspension culture of Medicago sativa was settled for the assessment of the impact of the addition of mercaptopropanoic acid coated CdSe/ZnS QDs. Cell growth was significantly reduced when 100 mM of mercaptopropanoic acid -QDs was added during the exponential growth phase, with less than 50% of the cells viable 72 hours after mercaptopropanoic acid -QDs addition. They were up taken by Medicago sativa cells and accumulated in the cytoplasm and nucleus as revealed by optical thin confocal imaging. As part of the cellular response to internalization, Medicago sativa cells were found to increase the production of Reactive Oxygen Species (ROS) in a dose and time dependent manner. Using the fluorescent dye H2DCFDA it was observable that mercaptopropanoic acid-QDs concentrations between 5-180 nM led to a progressive and linear increase of ROS accumulation. Conclusions: Our results showed that the extent of mercaptopropanoic acid coated CdSe/ZnS QDs cytotoxicity in plant cells is dependent upon a number of factors including QDs properties, dose and the environmental conditions of administration and that, for Medicago sativa cells, a safe range of 1-5 nM should not be exceeded for biological applications.