852 resultados para prefrontal cortex


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although many examples exist for shared neural representations of self and other, it is unknown how such shared representations interact with the rest of the brain. Furthermore, do high-level inference-based shared mentalizing representations interact with lower level embodied/simulation-based shared representations? We used functional neuroimaging (fMRI) and a functional connectivity approach to assess these questions during high-level inference-based mentalizing. Shared mentalizing representations in ventromedial prefrontal cortex, posterior cingulate/precuneus, and temporo-parietal junction (TPJ) all exhibited identical functional connectivity patterns during mentalizing of both self and other. Connectivity patterns were distributed across low-level embodied neural systems such as the frontal operculum/ventral premotor cortex, the anterior insula, the primary sensorimotor cortex, and the presupplementary motor area. These results demonstrate that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using fMRI, we examined the neural correlates of maternal responsiveness. Ten healthy mothers viewed alternating blocks of video: (i) 40 s of their own infant; (ii) 20 s of a neutral video; (iii) 40 s of an unknown infant and (iv) 20 s of neutral video, repeated 4 times. Predominant BOLD signal change to the contrast of infants minus neutral stimulus occurred in bilateral visual processing regions BA minus neutral stimulus occurred in bilateral visual processing regions (BA 38), left amygdala and visual cortex (BA 19), and to the unknown infant minus own infant contrast in bilateral orbitofrontal cortex (BA 10,47) and medial prefrontal cortex (BA 8). These findings suggest that amygdala and temporal pole may be key sites in mediating a mother's response to her infant and reaffirms their importance in face emotion processing and social behaviour.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Huntington disease ( HD) is characterized by the progressive death of medium spiny dopamine receptor bearing striatal GABAergic neurons. In addition, microglial activation in the areas of neuronal loss has recently been described in postmortem studies. Activated microglia are known to release neurotoxic cytokines, and these may contribute to the pathologic process. Methods: To evaluate in vivo the involvement of microglia activation in HD, the authors studied patients at different stages of the disease using [ C-11]( R)-PK11195 PET, a marker of microglia activation, and [ C-11] raclopride PET, a marker of dopamine D2 receptor binding and hence striatal GABAergic cell function. Results: In HD patients, a significant increase in striatal [ C-11]( R)-PK11195 binding was observed, which significantly correlated with disease severity as reflected by the striatal reduction in [ C-11] raclopride binding, the Unified Huntington's Disease Rating Scale score, and the patients' CAG index. Also detected were significant increases in microglia activation in cortical regions including prefrontal cortex and anterior cingulate. Conclusions: These [ C-11]( R)-PK11195 PET findings show that the level of microglial activation correlates with Huntington disease ( HD) severity. They lend support to the view that microglia contribute to the ongoing neuronal degeneration in HD and indicate that [ C-11]( R)-PK11195 PET provides a valuable marker when monitoring the efficacy of putative neuroprotecting agents in this relentlessly progressive genetic disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this review we evaluate the cognitive and neural effects of positive and negative mood on executive function. Mild manipulations of negative mood appear to have little effect on cognitive control processes, whereas positive mood impairs aspects of updating, planning and switching. These cognitive effects may be linked to neurochemistry: with positive mood effects mediated by dopamine while negative mood effects may be mediated by serotonin levels. Current evidence on the effects of mood on regional brain activity during executive functions, indicates that the prefrontal cortex is a recurrent site of integration between mood and cognition. We conclude that there is a disparity between the importance of this topic and awareness of how mood affects, executive functions in the brain. Most behavioural and neuroimaging studies of executive function in normal samples do not explore the potential role of variations in mood, yet the evidence we outline indicates that even mild fluctuations in mood can have a significant influence on neural activation and cognition. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parkinson's disease patients may have difficulty decoding prosodic emotion cues. These data suggest that the basal ganglia are involved, but may reflect dorsolateral prefrontal cortex dysfunction. An auditory emotional n-back task and cognitive n-back task were administered to 33 patients and 33 older adult controls, as were an auditory emotional Stroop task and cognitive Stroop task. No deficit was observed on the emotion decoding tasks; this did not alter with increased frontal lobe load. However, on the cognitive tasks, patients performed worse than older adult controls, suggesting that cognitive deficits may be more prominent. The impact of frontal lobe dysfunction on prosodic emotion cue decoding may only become apparent once frontal lobe pathology rises above a threshold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decoding emotional prosody is crucial for successful social interactions, and continuous monitoring of emotional intent via prosody requires working memory. It has been proposed by Ross and others that emotional prosody cognitions in the right hemisphere are organized in an analogous fashion to propositional language functions in the left hemisphere. This study aimed to test the applicability of this model in the context of prefrontal cortex working memory functions. BOLD response data were therefore collected during performance of two emotional working memory tasks by participants undergoing fMRI. In the prosody task, participants identified the emotion conveyed in pre-recorded sentences, and working memory load was manipulated in the style of an N-back task. In the matched lexico-semantic task, participants identified the emotion conveyed by sentence content. Block-design neuroimaging data were analyzed parametrically with SPM5. At first, working memory for emotional prosody appeared to be right-lateralized in the PFC, however, further analyses revealed that it shared much bilateral prefrontal functional neuroanatomy with working memory for lexico-semantic emotion. Supplementary separate analyses of males and females suggested that these language functions were less bilateral in females, but their inclusion did not alter the direction of laterality. It is concluded that Ross et al.'s model is not applicable to prefrontal cortex working memory functions, that evidence that working memory cannot be subdivided in prefrontal cortex according to material type is increased, and that incidental working memory demands may explain the frontal lobe involvement in emotional prosody comprehension as revealed by neuroimaging studies. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We frequently encounter conflicting emotion cues. This study examined how the neural response to emotional prosody differed in the presence of congruent and incongruent lexico-semantic cues. Two hypotheses were assessed: (i) decoding emotional prosody with conflicting lexico-semantic cues would activate brain regions associated with cognitive conflict (anterior cingulate and dorsolateral prefrontal cortex) or (ii) the increased attentional load of incongruent cues would modulate the activity of regions that decode emotional prosody (right lateral temporal cortex). While the participants indicated the emotion conveyed by prosody, functional magnetic resonance imaging data were acquired on a 3T scanner using blood oxygenation level-dependent contrast. Using SPM5, the response to congruent cues was contrasted with that to emotional prosody alone, as was the response to incongruent lexico-semantic cues (for the 'cognitive conflict' hypothesis). The right lateral temporal lobe region of interest analyses examined modulation of activity in this brain region between these two contrasts (for the 'prosody cortex' hypothesis). Dorsolateral prefrontal and anterior cingulate cortex activity was not observed, and neither was attentional modulation of activity in right lateral temporal cortex activity. However, decoding emotional prosody with incongruent lexico-semantic cues was strongly associated with left inferior frontal gyrus activity. This specialist form of conflict is therefore not processed by the brain using the same neural resources as non-affective cognitive conflict and neither can it be handled by associated sensory cortex alone. The recruitment of inferior frontal cortex may indicate increased semantic processing demands but other contributory functions of this region should be explored.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies of the Stroop task propose two key mediators: the prefrontal and cingulate cortices but hints exist of functional specialization within these regions. This study aimed to examine the effect of task modality upon the prefrontal and cingulate response by examining the response to colour, number, and shape Stroop tasks whilst BOLD fMRI images were acquired on a Siemens 3 T MRI scanner. Behavioural analyses indicated facilitation and interference effects and a noticeable effect of task difficulty. Some modular effects of modality were observed in the prefrontal cortex that survived exclusion of task difficulty related activations. No effect of task-relevant information was observed in the anterior cingulate. Future comparisons of the mediation of selective attention need to consider the effects of task context and task difficulty. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temporal discounting (TD) matures with age, alongside other markers of increased impulse control, and coherent, self-regulated behaviour. Discounting paradigms quantify the ability to refrain from preference of immediate rewards, in favour of delayed, larger rewards. As such, they measure temporal foresight and the ability to delay gratification, functions that develop slowly into adulthood. We investigated the neural maturation that accompanies the previously observed age-related behavioural changes in discounting, from early adolescence into mid-adulthood. We used functional magnetic resonance imaging of a hypothetical discounting task with monetary rewards delayed in the week to year range. We show that age-related reductions in choice impulsivity were associated with changes in activation in ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), ventral striatum (VS), insula, inferior temporal gyrus, and posterior parietal cortex. Limbic frontostriatal activation changes were specifically associated with age-dependent reductions in impulsive choice, as part of a more extensive network of brain areas showing age-related changes in activation, including dorsolateral PFC, inferior parietal cortex, and subcortical areas. The maturational pattern of functional connectivity included strengthening in activation coupling between ventromedial and dorsolateral PFC, parietal and insular cortices during selection of delayed alternatives, and between vmPFC and VS during selection of immediate alternatives. We conclude that maturational mechanisms within limbic frontostriatal circuitry underlie the observed post-pubertal reductions in impulsive choice with increasing age, and that this effect is dependent on increased activation coherence within a network of areas associated with discounting behaviour and inter-temporal decision-making.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Visual observation of human actions provokes more motor activation than observation of robotic actions. We investigated the extent to which this visuomotor priming effect is mediated by bottom-up or top-down processing. The bottom-up hypothesis suggests that robotic movements are less effective in activating the ‘mirror system’ via pathways from visual areas via the superior temporal sulcus to parietal and premotor cortices. The top-down hypothesis postulates that beliefs about the animacy of a movement stimulus modulate mirror system activity via descending pathways from areas such as the temporal pole and prefrontal cortex. In an automatic imitation task, subjects performed a prespecified movement (e.g. hand opening) on presentation of a human or robotic hand making a compatible (opening) or incompatible (closing) movement. The speed of responding on compatible trials, compared with incompatible trials, indexed visuomotor priming. In the first experiment, robotic stimuli were constructed by adding a metal and wire ‘wrist’ to a human hand. Questionnaire data indicated that subjects believed these movements to be less animate than those of the human stimuli but the visuomotor priming effects of the human and robotic stimuli did not differ. In the second experiment, when the robotic stimuli were more angular and symmetrical than the human stimuli, human movements elicited more visuomotor priming than the robotic movements. However, the subjects’ beliefs about the animacy of the stimuli did not affect their performance. These results suggest that bottom-up processing is primarily responsible for the visuomotor priming advantage of human stimuli.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share behavioural-cognitive abnormalities in sustained attention. A key question is whether this shared cognitive phenotype is based on common or different underlying pathophysiologies. To elucidate this question, we compared 20 boys with ADHD to 20 age and IQ matched ASD and 20 healthy boys using functional magnetic resonance imaging (fMRI) during a parametrically modulated vigilance task with a progressively increasing load of sustained attention. ADHD and ASD boys had significantly reduced activation relative to controls in bilateral striato–thalamic regions, left dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex. Both groups also displayed significantly increased precuneus activation relative to controls. Precuneus was negatively correlated with the DLPFC activation, and progressively more deactivated with increasing attention load in controls, but not patients, suggesting problems with deactivation of a task-related default mode network in both disorders. However, left DLPFC underactivation was significantly more pronounced in ADHD relative to ASD boys, which furthermore was associated with sustained performance measures that were only impaired in ADHD patients. ASD boys, on the other hand, had disorder-specific enhanced cerebellar activation relative to both ADHD and control boys, presumably reflecting compensation. The findings show that ADHD and ASD boys have both shared and disorder-specific abnormalities in brain function during sustained attention. Shared deficits were in fronto–striato–parietal activation and default mode suppression. Differences were a more severe DLPFC dysfunction in ADHD and a disorder-specific fronto–striato–cerebellar dysregulation in ASD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dorsolateral prefrontal cortex (DLPFC) is recruited during visual working memory (WM) when relevant information must be maintained in the presence of distracting information. The mechanism by which DLPFC might ensure successful maintenance of the contents of WM is, however, unclear; it might enhance neural maintenance of memory targets or suppress processing of distracters. To adjudicate between these possibilities, we applied time-locked transcranial magnetic stimulation (TMS) during functional MRI, an approach that permits causal assessment of a stimulated brain region's influence on connected brain regions, and evaluated how this influence may change under different task conditions. Participants performed a visual WM task requiring retention of visual stimuli (faces or houses) across a delay during which visual distracters could be present or absent. When distracters were present, they were always from the opposite stimulus category, so that targets and distracters were represented in distinct posterior cortical areas. We then measured whether DLPFC-TMS, administered in the delay at the time point when distracters could appear, would modulate posterior regions representing memory targets or distracters. We found that DLPFC-TMS influenced posterior areas only when distracters were present and, critically, that this influence consisted of increased activity in regions representing the current memory targets. DLPFC-TMS did not affect regions representing current distracters. These results provide a new line of causal evidence for a top-down DLPFC-based control mechanism that promotes successful maintenance of relevant information in WM in the presence of distraction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Constrained principal component analysis (CPCA) with a finite impulse response (FIR) basis set was used to reveal functionally connected networks and their temporal progression over a multistage verbal working memory trial in which memory load was varied. Four components were extracted, and all showed statistically significant sensitivity to the memory load manipulation. Additionally, two of the four components sustained this peak activity, both for approximately 3 s (Components 1 and 4). The functional networks that showed sustained activity were characterized by increased activations in the dorsal anterior cingulate cortex, right dorsolateral prefrontal cortex, and left supramarginal gyrus, and decreased activations in the primary auditory cortex and "default network" regions. The functional networks that did not show sustained activity were instead dominated by increased activation in occipital cortex, dorsal anterior cingulate cortex, sensori-motor cortical regions, and superior parietal cortex. The response shapes suggest that although all four components appear to be invoked at encoding, the two sustained-peak components are likely to be additionally involved in the delay period. Our investigation provides a unique view of the contributions made by a network of brain regions over the course of a multiple-stage working memory trial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

What are the precise brain regions supporting the short-term retention of verbal information? A previous functional magnetic resonance imaging (fMRI) study suggested that they may be topographically variable across individuals, occurring, in most, in regions posterior to prefrontal cortex (PFC), and that detection of these regions may be best suited to a single-subject (SS) approach to fMRI analysis (Feredoes and Postle, 2007). In contrast, other studies using spatially normalized group-averaged (SNGA) analyses have localized storage-related activity to PFC. To evaluate the necessity of the regions identified by these two methods, we applied repetitive transcranial magnetic stimulation (rTMS) to SS- and SNGA-identified regions throughout the retention period of a delayed letter-recognition task. Results indicated that rTMS targeting SS analysis-identified regions of left perisylvian and sensorimotor cortex impaired performance, whereas rTMS targeting the SNGA-identified region of left caudal PFC had no effect on performance. Our results support the view that the short-term retention of verbal information can be supported by regions associated with acoustic, lexical, phonological, and speech-based representation of information. They also suggest that the brain bases of some cognitive functions may be better detected by SS than by SNGA approaches to fMRI data analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Major Depressive Disorder (MDD) has been associated with biased processing and abnormal regulation of negative and positive information, which may result from compromised coordinated activity of prefrontal and subcortical brain regions involved in evaluating emotional information. We tested whether patients with MDD show distributed changes in functional connectivity with a set of independently derived brain networks that have shown high correspondence with different task demands, including stimulus salience and emotional processing. We further explored if connectivity during emotional word processing related to the tendency to engage in positive or negative emotional states. In this study, 25 medication-free MDD patients without current or past comorbidity and matched controls (n=25) performed an emotional word-evaluation task during functional MRI. Using a dual regression approach, individual spatial connectivity maps representing each subject’s connectivity with each standard network were used to evaluate between-group differences and effects of positive and negative emotionality (extraversion and neuroticism, respectively, as measured with the NEO-FFI). Results showed decreased functional connectivity of the medial prefrontal cortex, ventrolateral prefrontal cortex, and ventral striatum with the fronto-opercular salience network in MDD patients compared to controls. In patients, abnormal connectivity was related to extraversion, but not neuroticism. These results confirm the hypothesis of a relative (para)limbic-cortical decoupling that may explain dysregulated affect in MDD. As connectivity of these regions with the salience network was related to extraversion, but not to general depression severity or negative emotionality, dysfunction of this network may be responsible for the failure to sustain engagement in rewarding behavior.