914 resultados para population genetic structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La caries dental es una enfermedad infecciosa, crónica y trasmisible, que se caracteriza por la desmineralización de los tejidos duros del diente, producida por la acción de los ácidos resultantes de la actividad metabólica del biofilm desarrollado sobre los dientes. Si bien, la etiología de la caries sería polimicrobiana, los estreptococos del grupo mutans son señalados como los principales protagonistas en el inicio de la lesión cariosa. En la pared celular se destacan proteínas que participan en procesos de adhesión, agregación y co-agregación, además de polisacáridos que muestran distintas especificidades antigénicas, lo que permite distinguir cuatro serotipos: c, e, f y k. Es escasa la información de las características antigénicas de las cepas circulantes de estreptococos del grupo mutans y se desconoce la relación de las mismas con la actividad de caries. En este estudio nuestros objetivos son identificar y caracterizar fenotípica y genotípicamente las cepas de estreptococos del grupo mutans circulantes en la provincia de Córdoba. La población de estudio estará constituida por escolares, urbano–marginales de la capital y del interior de la provincia. Se determinarán los serotipos de las mismas a través de de amplificaciones por PCR de tipo multiplex y luego se secuenciarán 8 genes a través de la técnica de tipado multilocus, con el fin de realizar estudios de sistemática molecular, y de estimar la estructura genética de S. mutans. Una vez que se hayan caracterizado los patrones de diversidad y distribución geográfica de S. mutans del centro de Argentina, se intentará dilucidar cómo se relacionan la diversidad genética con la experiencia de caries de los niños del estudio. Se analizarán de forma conjunta nuestros resultados con los publicados por otros autores. De esta forma se logrará una mejor comprensión de los factores históricos y ecológicos que han moldeado su distribución y aportar conocimientos a la sistemática del grupo “mutans” en relación a otras bacterias del género Streptococcus. Dental caries is an infectious, chronic and transmissible disease, characterized by demineralization of the hard tissues of the teeth, produced by the action of acids resulting from the metabolic activity of biofilm developed on the teeth. Although the etiology of caries would be polymicrobial, the streptococci of the mutans group are identified as the major responsible in the initiation of the carious lesion. In the cell wall there are proteins involved in adhesion, aggregation and co-aggregation processes, as well as polysaccharides that present different antigenic specificities, which allow the distinction of four serotypes c, e, f and k. There is little information about the antigenic characteristics of the Streptococcus mutans strains and the relationship of those characteristics with the caries activity is unknown. In the present study our goals are to identify and characterize the phenotypic and genotypic strains of streptococci of the mutans group circulating in the province of Cordoba. The study population will consist of urban and rural scholar children from Cordoba city and from the interior of the province. In order to study the molecular systematic, and the genetic structure of S. mutans, different serotypes will be determined by multiplex PCR amplifications and eight genes will be sequenced by using the multilocus typing technique. Once the diversity and the geographical distribution patterns of S. mutans from the center of Argentina is characterized, we will attempt to clarify how the genetic diversity is related with the caries experience in the children of the study. Our results will be analyzed together with those published by other authors. This will achieve a better understanding of the historical and ecological factors that shaped the bacteria’s distribution and will contribute to the knowledge of the systematic of the mutans group in relation to other bacteria of the genus Streptococcus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess genetic structure and phenotypic diversity of Eupemphix nattereri Steindachner, 1863, morphometric and molecular analyses were carried out for nine populations from the State of Goiás. A total of 11 morphometric traits were evaluated and genetic information was estimated using RAPD markers. Genetic and phenotypic distances were determined as a function of geographical origin. Correlation among genetic, morphometric, micro, and macroenviromental were analyzed by the Mantel test. Genetic data indicated high levels of genetic diversity (Φst= 0.3) among the nine populations. Mantel tests did not reveal a significant positive correlation between genetic and geographical distances, indicating that locally geographical populations were not genetically similar, even in distances smaller than 50 km. Discriminant analysis on 11 morphometric measurements showed a high divergence among the nine populations. However, a marginally significant correlation (P=0.08) between genetic and morphometric distances was found. The observed correlation was not causal in terms of the relationship between phenotype and genotype, but indicated common spatial structures. Thus, our results suggest that isolation-by-distance processes may explain population divergence in Eupemphix nattereri.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every spring, workers of the Argentine Ant Linepithema humile kill a large proportion of queens within their nests, Although this behaviour inflicts a high energetic cost oil the colonies, its biological significance has remained elusive so far. An earlier study showed that the probability of a queen being executed is not related to her weight, fecundity, or age. Here we test the hypothesis that workers collectively eliminate queens to which they are less related, thereby increasing their inclusive fitness. We found no evidence for this hypothesis. Workers of a nest were on average not significantly less related to executed queens than to surviving ones. Moreover, a population genetic analysis revealed that workers were not genetically differentiated between nests. This means that workers of a given nest are equally related to any queen in the population and that there can be no increase in average worker-queen relatedness by selective elimination of queens. Finally, our genetic analyses also showed that, in contrast to workers, queens were significantly genetically differentiated between nests and that there was significant isolation by distance for queens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY : The coevolution between two intimately associated organisms, like host and parasite, is a widely investigated theme in evolutionary biology. Recently, the use of genetic data in the study of host-parasite systems evidences that the genetic information from some parasites can complement genetic data from their hosts and thus may help to better understand their host's evolutionary history. Phylogenetic and population genetic aspects of bat parasites have been poorly investigated. Spinturnicid mites are highly specialized ectoparasites, exclusively associated with bats and therefore represent an ideal model to extant our knowledge on bat and parasite biology and on their coevolutionary history. In this thesis, I developed several molecular markers (mitochondrial DNA) to compare the genetic patterns of Spinturnix mites with their bat hosts at different levels. The molecular co-phylogeny between Spinturnix sp. and their bat hosts suggests a partial cospeciation and the occurrence of failure to speciate events and multiple host switches. Thus, Spinturnix mites do not exactly mirror the phylogenetic pattern of their hosts, despite their intimate association. Similar roosting habits of the hosts seem to promote host switches between different species, as far as ecological conditions are favourable. The phylogeographic study of the Maghrebian bat M. punicus in the Mediterranean area confirms the presence of M. punicus in North Africa, Corsica and Sardinia and highlights that islands and mainland are genetically highly divergent. The comparison between the parasitic mite S. myoti and the Maghrebian bat suggests that the phylogeographic pattern of the mite is moulded by its host, with open water as main barrier for host and parasite dispersal. Moreover, the unique presence of a European S. myoti lineage on M. punicus from Corsica strongly suggests the former presence of mouse-eared bats (M. myotis and/or M. blythii) in Corsica. By highlighting the probable presence of a nowadays locally extinct host species, S. myoti may represent a good proxy for inferring complex evolutionary history of bat hosts. Finally, population genetic surveys of S. myoti and S. bechsteinii suggest that these mites benefit from close contacts between individuals during the mating season and/or hibernation to disperse among remote colonies. The contrasted genetic patterns of these two distinct bat-mite systems evidence that bat social structure is a determinant factor of the genetic structure of mite populations. Altogether, this PhD thesis demonstrates the usefulness of parasites to gather information about their bat hosts. In addition, my results illustrate how different ecological and biological characteristics of bat species allow the emergence of a surprising diversity in the genetic patterns of the parasites, which may contribute to the diversification and speciation of parasites. RESUME : La co-évolution entre deux organismes intimement liés, comme un parasite et son hôte, fait partie des questions largement étudiées en biologie évolutive. Récemment, l'utilisation de données génétique dans l'étude des interactions hôte-parasite a montré que l'information génétique de certains parasites peut compléter les données génétiques de l'hôte et ainsi peut éclairer l'histoire évolutive de leur hôte. Très peu études ont étudié les interactions entre les chauves-souris et leurs parasites d'un point de vue moléculaire. Les acariens du genre Spinturnix sont des ectoparasites très spécialisés exclusivement associés aux chauves-souris. Ils représentent donc un model idéal pour élargir nos connaissances tant sur l'écologie des parasites de chauves-souris que sur leur coévolution. Durant cette thèse, plusieurs marqueurs moléculaires (ADN mitochondrial) ont été développés pour ainsi comparer la distribution de la variation génétique des parasites du genre Spinturnix avec celle de leurs hôtes, et ceci à différents niveaux. Tout d'abord, la co-phylogénie moléculaire entre les espèces de Spinturnix et les leurs hôtes révèle une co-spéciation partielle ainsi que la présence d'événement de non spéciation et de transferts horizontaux. Ces parasites ne reflètent donc pas entièrement l'histoire évolutive de leurs hôtes, malgré leurs intimes associations. La cohabitation de plusieurs espèces de chauves-souris dans un même gîte permet aux parasites un transfert entre différentes espèces, atténuant ainsi leur degré de co-spéciation. Deuxièmement, l'étude phylogéographique du marin du Maghreb dans le bassin Méditerranéen confirme sa présence en Afrique du Nord, en Corse et en Sardaigne. La comparaison avec un de ses parasites S. myoti suggère que la répartition génétique de S. myoti est façonnée par celle de leurs hôtes, avec les étendues d'eau comme barrière principale tant à la dispersion de l'hôte que de son parasite. De plus, la présence unique d'une lignée européenne de ces parasites sur des marins du Maghreb de Corse suggère fortement la présence du grand ou petit marin en Corse dans le passé. En reflétant la présence potentielle à un endroit donné d'une espèce de chauve-souris actuellement disparue, S. myoti peut représenter une bonne alternative pour comprendre l'histoire évolutive complexe des chauves-souris. Finalement, l'étude des structures génétiques des populations des parasites S. myoti et S. bechsteinii suggère que les contacts corporels entre chauves-souris durant la saison de reproduction ou l'hibernation peuvent permettre la dispersion des parasites entre des colonies éloignées géographiquement. La différence de structure génétique entre ces deux associations particulières montre que la structure génétique des populations de parasites dépend fortement des traits d'histoire de vie de son hôte. Dans l'ensemble, cette thèse démontre l'importance des parasites pour amener des informations sur leurs hôtes, les chauves-souris. Elle illustre aussi comment les différences écologique et biologique des différentes espèces de chauves-souris peuvent amener une étonnante diversité de structure génétique au sein de populations de parasites, ce qui peut peut-être contribuer à la diversification et à la spéciation des parasites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARYIn the context of the biodiversity crisis, amphibians are experiencing the most severe worldwide decline of all vertebrates and are in urgent need of better management. Efficient conservation strategies rely on sound knowledge of the species biology and of the genetic and demographic processes that might impair their welfare. Nonetheless, these processes are poorly understood in amphibians. Delineating population boundaries remains consequently problematic for these species, while it is of critical importance to define adequate management units for conservation. In this study, our attention focused on the alpine salamander (Salamandra atra), a species that deserves much interest in terms of both conservation biology and evolution. This endemic alpine species shows peculiar life-history traits (viviparity, reduced activity period, slow maturation) and has a slow population turnover, which might be problematic for its persistence in a changing environment. Due to its elusive behaviour (individuals spend most of their time underground and are unavailable for sampling), dynamic processes of gene and individuals were poorly understood for that species. Consequently, its conservation status could hardly be reliably assessed. Similarly the fire salamander (Salamandra salamandra) also poses special challenges for conservation, as no clear demarcation of geographical populations exists and dispersal patterns are poorly known. Through a phylogeographic analysis, we first studied the evolutionary history of the alpine salamander to better document the distribution of the genetic diversity along its geographical range. This study highlighted the presence of multiple divergent lineages in Italy together with a clear genetic divergence between populations from Northern and Dinaric Alps. These signs of cryptic genetic differentiation, which are not accounted for by the current taxonomy of the species, should not be neglected for further definition of conservation units. In addition, our data supported glacial survival of the species in northern peripheral glacial réfugia and nunataks, a pattern rarely documented for long-lived species. Then, we evaluated the level of gene flow between populations at the local scale and tested for asymmetries in male versus female dispersal using both field-based (mark-recapture) and genetic approaches. This study revealed high level of gene flow between populations, which stems mainly from male dispersal. This corroborated the idea that salamanders are much better dispersers than hitherto thought and provided a well- supported example of male-biased dispersal in amphibians. In a third step, based on a mark- recapture survey, we addressed the problem of sampling unavailability in alpine salamanders and evaluated its impact on two monitoring methods. We showed that about three quarters of individuals were unavailable for sampling during sampling sessions, a proportion that can vary with climatic conditions. If not taken into account, these complexities would result in false assumptions on population trends and misdirect conservation efforts. Finally, regarding the daunting task of delineating management units, our attention was drawn on the fire salamander. We conducted a local population genetic study that revealed high levels of gene flow among sampling sites. Management units for this species should consequently be large. Interestingly, despite the presence of several landscape features often reported to act as barriers, genetic breaks occurred at unexpected places. This suggests that landscape features may rather have idiosyncratic effects on population structure. In conclusion, this work brought new insights on both genetic and demographic processes occurring in salamanders. The results suggest that some biological paradigms should be taken with caution when particular species are in focus. Species- specific studies remain thus fundamental for a better understanding of species evolution and conservation, particularly in the context of current global changes.RESUMEDans le contexte de la crise de la biodiversité actuelle, les amphibiens subissent le déclin le plus important de tous les vertébrés et ont urgemment besoin d'une meilleure protection. L'établissement de stratégies de conservation efficaces repose sur des connaissances solides de la biologie des espèces et des processus génétiques et démographiques pouvant menacer leur survie. Ces processus sont néanmoins encore peu étudiés chez les amphibiens.Dans cette étude, notre attention s'est portée sur la salamandre noire (Salamandra atra), une espèce endémique des Alpes dont les traits d'histoire de vie atypiques (viviparité, phase d'activité réduite, lent turnover des populations) pourraient la rendre très vulnérable face aux changements environnementaux. Par ailleurs, en raison de son comportement cryptique (les individus passent la plupart de leur temps sous terre) la dynamique des gènes et des individus est mal comprise chez cette espèce. Il est donc difficile d'évaluer son statut de conservation de manière fiable. La salamandre tachetée {Salamandra salamandra), pour qui il n'existe aucune démarcation géographique apparente des populations, pose également des problèmes en termes de gestion. Dans un premier temps, nous avons étudié l'histoire évolutive de la salamandre noire afin de mieux décrire la distribution de sa diversité génétique au sein de son aire géographique. Cela a permis de mettre en évidence la présence de multiples lignées en Italie, ainsi qu'une nette divergence entre les populations du nord des Alpes et des Alpes dinariques. Ces résultats seront à prendre en compte lorsqu'il s'agira de définir des unités de conservation pour cette espèce. D'autre part, nos données soutiennent l'hypothèse d'une survie glaciaire dans des refuges nordiques périglaciaires ou dans des nunataks, fait rarement documenté pour une espèce longévive. Nous avons ensuite évalué la différentiation génétique des populations à l'échelle locale, ce qui a révélé d'important flux de gènes, ainsi qu'une asymétrie de dispersion en faveur des mâles. Ces résultats corroborent l'idée que les amphibiens dispersent mieux que ce que l'on pensait, et fournissent un exemple robuste de dispersion biaisée en faveur des mâles chez les amphibiens. Nous avons ensuite abordé le problème de Γ inaccessibilité des individus à la capture. Nous avons montré qu'environ trois quarts des individus sont inaccessibles lors des échantillonnages, une proportion qui peut varier en fonction des conditions climatiques. Ignoré, ce processus pourrait entraîner une mauvaise interprétation des fluctuations de populations ainsi qu'une mauvaise allocation des efforts de conservation. Concernant la définition d'unités de gestion pour la salamandre tachetée, nous avons pu mettre en évidence un flux de gènes important entre les sites échantillonnés. Les unités de gestion pour cette espèce devraient donc être étendues. Etonnamment, malgré la présence de nombreuses barrières potentielles au flux de gènes, les démarcations génétiques sont apparues à des endroits inattendus. En conclusion, ce travail a apporté une meilleure compréhension des processus génétiques et démographiques en action chez les salamandres. Les résultats suggèrent que certains paradigmes biologiques devraient être considérés avec précaution quand il s'agit de les appliquer à des espèces particulières. Les études spécifiques demeurent donc fondamentales pour une meilleure compréhension de l'évolution des espèces et leur conservation, tout particulièrement dans le contexte des changements globaux actuels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random amplified polymorphic DNA (RAPD) analysis technique was undertaken in Aedes albopictus populations from three states in Brazil, Rio de Janeiro (RJ), Minas Gerais (MG) and Pernambuco (PE), to estimate the level of genetic variability and levels of genetic exchange between populations. Allele and genotype frequencies were measured on 47 RAPD loci. Average observed heterozigosity (Ho) ranged from 0.282 in MG to 0.355 in Casa Forte (PE) population. Genetic distances estimates indicated that RJ and MG were more genetically similar than populations from PE. Genetic variation observed in local Brazilian populations was attributed to genetic drift associated with restricted gene flow in recently established populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have reported genetic differences between wild-caught sylvatic, domestic and laboratory pop-ulations of several Triatominae species. The differences between sylvatic and laboratory colonies parallel are similar to the differences observed between sylvatic and domestic populations. Laboratory colonies are frequently used as references for field populations, but the consequences of founder events on the genetic makeup of laboratory or domestic populations are rarely quantified. Our goal was to quantify the genetic change in Rhodnius pallescens populations artificially submitted to founder effects via laboratory colonization. We compared the genetic makeup of two sylvatic populations and their laboratory descendants using a panel of 10 microsatellite markers. Both sylvatic populations were initially collected from palm trees, but the colonies differed in the number of founder insects and amount of time kept in the laboratory. We evaluated allelic polymorphism, differences between expected and observed heterozygosity, estimates of population differentiation (Fst) and inbreeding (Fis, Fit) and cluster analyses based on Nei's distances. We found a unique genetic structure for each sample population, with significant differentiation between the field insects and each of the laboratory generations. These analyses showed strong founder effects and showed that genetic drift had led to a genetic equilibrium over several generations of isolation. Our results suggest that laboratory colonies of R. pallescens have a different genetic structure than their wild relatives and similar processes likely affect other Triatominae laboratory stocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In populations of various ant species, many queens reproduce in the same nest (polygyny), and colony boundaries appear to be absent with individuals able to move fi eely between nests (unicoloniality). Such societies depart strongly from a simple family structure and pose a potential challenge to kin selection theory, because high queen number coupled with unrestricted gene flow among nests should result in levels of relatedness among nestmates close to zero. This study investigated the breeding system and genetic structure of a highly polygynous and largely unicolonial population of the wood ant Formica paralugubris. A microsatellite analysis revealed that nestmate workers, reproductive queens and reproductive males (the queens' mates) are all equally related to each other, with relatedness estimates centring around 0.14. This suggests that most of the queens and males reproducing in the study population had mated within or close to their natal nest, and that the queens did not disperse far after mating. We developed a theoretical model to investigate how the breeding system affects the relatedness structure of polygynous colonies. By combining the model and our empirical data, it was estimated that about 99.8% of the reproducing queens and males originated from within the nest, or from a nearby nest. This high rate of local mating and the rarity of long-distance dispersal maintain significant relatedness among nestmates, and contrast with the common view that unicoloniality is coupled with unrestricted gene flow among nests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Data provided by the social sciences as well as genetic research suggest that the 8-10 million Roma (Gypsies) who live in Europe today are best described as a conglomerate of genetically isolated founder populations. The relationship between the traditional social structure observed by the Roma, where the Group is the primary unit, and the boundaries, demographic history and biological relatedness of the diverse founder populations appears complex and has not been addressed by population genetic studies. Results: Recent medical genetic research has identified a number of novel, or previously known but rare conditions, caused by private founder mutations. A summary of the findings, provided in this review, should assist diagnosis and counselling in affected families, and promote future collaborative research. The available incomplete epidemiological data suggest a non-random distribution of disease-causing mutations among Romani groups.Conclusion: Although far from systematic, the published information indicates that medical genetics has an important role to play in improving the health of this underprivileged and forgotten people of Europe. Reported carrier rates for some Mendelian disorders are in the range of 5 -15%, sufficient to justify newborn screening and early treatment, or community-based education and carrier testing programs for disorders where no therapy is currently available. To be most productive, future studies of the epidemiology of single gene disorders should take social organisation and cultural anthropology into consideration, thus allowing the targeting of public health programs and contributing to the understanding of population structure and demographic history of the Roma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) are ecologically important root symbionts of most terrestrial plants. Ecological studies of AMF have concentrated on differences between species; largely assuming little variability within AMF species. Although AMF are clonal, they have evolved to contain a surprisingly high within-species genetic variability, and genetically different nuclei can coexist within individual spores. These traits could potentially lead to within-population genetic variation, causing differences in physiology and symbiotic function in AMF populations, a consequence that has been largely neglected. We found highly significant genetic and phenotypic variation among isolates of a population of Glomus intraradices but relatively low total observed genetic diversity. Because we maintained the isolated population in a constant environment, phenotypic variation can be considered as variation in quantitative genetic traits. In view of the large genetic differences among isolates by randomly sampling two individual spores, <50% of the total observed population genetic diversity is represented. Adding an isolate from a distant population did not increase total observed genetic diversity. Genetic variation exceeded variation in quantitative genetic traits, indicating that selection acted on the population to retain similar traits, which might be because of the multigenomic nature of AMF, where considerable genetic redundancy could buffer the effects of changes in the genetic content of phenotypic traits. These results have direct implications for ecological research and for studying AMF genes, improving commercial AMF inoculum, and understanding evolutionary mechanisms in multigenomic organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used microsatellites to study the fine-scale genetic structure of a highly polygynous and largely uni-colonial population of the ant Formica paralugubris. Genetic data indicate that long-distance gene flow between established nests is limited and new queens are primarily recruited from within their natal nest. Most matings occur between nestmates and are random at this level. In the center of the study area, budding and permanent connections between nests result in strong population viscosity, with close nests being more similar generically than distant nests. In contrast, nests located outside of this supercolony show no isolation by distance, suggesting that they have been initiated by queens that participated in mating flights rather than by budding from nearby nests in our sample population. Recruitment of nestmates as new reproductive individuals and population viscosity in the supercolony increase genetic differentiation between nests. This in turn inflates relatedness estimates among worker nestmates (r = 0.17) above what is due to close pedigree links. Local spatial genetic differentiation may favor the maintenance of altruism when workers raise queens that will disperse on foot and compete with less related queens from neighboring nests or disperse on the wing and compete with unrelated queens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The population-genetic consequences of monogamy and male philopatry (a rare breeding system in mammals) were investigated using microsatellite markers in the semisocial and anthropophilic shrew Crocidura russula. A hierarchical sampling design over a 16-km geographical transect revealed a large genetic diversity (h = 0.813) with significant differentiation among subpopulations (F-ST = 5-6%), which suggests an exchange of 4.4 migrants per generation. Demic effective-size estimates were very high, due both to this limited gene inflow and to the inner structure of subpopulations. These were made of 13-20 smaller units (breeding groups), comprising an estimate of four breeding pairs each. Members of the same breeding groups displayed significant coancestries (F-LS = 9-10%), which was essentially due to strong male kinship: syntopic males were on average related at the half-sib level. Female dispersal among breeding groups was not complete (similar to 39%), and insufficient to prevent inbreeding. From our results, the breeding strategy of C. russula seems less efficient than classical mammalian systems (polygyny and male dispersal) in disentangling coancestry from inbreeding, but more so in retaining genetic variance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal variability was studied in the common sea urchin Paracentrotus lividus through the analysis of the genetic composition of three yearly cohorts sampled over two consecutive springs in a locality in northwestern Mediterranean. Individuals were aged using growth ring patterns observed in tests and samples were genotyped for five microsatellite loci. No reduction of genetic diversity was observed relative to a sample of the adult population from the same location or within cohorts across years. FST and amova results indicated that the differentiation between cohorts is rather shallow and not significant, as most variability is found within cohorts and within individuals. This mild differentiation translated into estimates of effective population size of 90100 individuals. When the observed excess of homozygotes was taken into account, the estimate of the average number of breeders increased to c. 300 individuals. Given our restricted sampling area and the known small-scale heterogeneity in recruitment in this species, our results suggest that at stretches of a few kilometres of shoreline, large numbers of progenitors are likely to contribute to the larval pool at each reproduction event. Intercohort variation in our samples is six times smaller than spatial variation between adults of four localities in the western Mediterranean. Our results indicate that, notwithstanding the stochastic events that take place during the long planktonic phase and during the settlement and recruitment processes, reproductive success in this species is high enough to produce cohorts genetically diverse and with little differentiation between them. Further research is needed before the link between genetic structure and underlying physical and biological processes can be well established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The species of the common shrew (Sorex araneus) group are morphologically very similar but exhibit high levels of karyotypic variation. Here we used genetic variation at 10 microsatellite markers in a data set of 212 individuals mostly sampled in the western Alps and composed of five karyotypic taxa (Sorex coronatus, Sorex antinorii and the S. araneus chromosome races Cordon, Bretolet and Vaud) to investigate the concordance between genetic and karyotypic structure. Bayesian analysis confirmed the taxonomic status of the three sampled species since individuals consistently grouped according to their taxonomical status. However, introgression can still be detected between S. antinorii and the race Cordon of S. araneus. This observation is consistent with the expected low karyotypic complexity of hybrids between these two taxa. Geographically based cryptic substructure was discovered within S. antinorii, a pattern consistent with the different postglaciation recolonization routes of this species. Additionally, we detected two genetic groups within S. araneus notwithstanding the presence of three chromosome races. This pattern can be explained by the probable hybrid status of the Bretolet race but also suggests a relatively low impact of chromosomal differences on genetic structure compared to historical factors. Finally, we propose that the current data set (available at http://www.unil.ch/dee/page7010_en.html#1) could be used as a reference by those wanting to identify Sorex individuals sampled in the western Alps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated sex specificities in the evolutionary processes shaping Y chromosome, autosomes, and mitochondrial DNA patterns of genetic structure in the Valais shrew (Sorex antinorii), a mountain dwelling species with a hierarchical distribution. Both hierarchical analyses of variance and isolation-by-distance analyses revealed patterns of population structure that were not consistent across maternal, paternal, and biparentally inherited markers. Differentiation on a Y microsatellite was lower than expected from the comparison with autosomal microsatellites and mtDNA, and it was mostly due to genetic variance among populations within valleys, whereas the opposite was observed on other markers. In addition, there was no pattern of isolation by distance for the Y, whereas there was strong isolation by distance on mtDNA and autosomes. We use a hierarchical island model of coancestry dynamics to discuss the relative roles of the microevolutionary forces that may induce such patterns. We conclude that sex-biased dispersal is the most important driver of the observed genetic structure, but with an intriguing twist: it seems that dispersal is strongly male biased at large spatial scale, whereas it is mildly biased in favor of females at local scale. These results add to recent reports of scale-specific sex-biased dispersal patterns, and emphasize the usefulness of the Y chromosome in conjunction with mtDNA and autosomes to infer sex specificities.