975 resultados para plasma production by laser


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oil wastes were evaluated as alternative low-cost substrates for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. Wastes obtained from soybean, cottonseed, babassu, palm, and corn oil refinery were tested. The soybean soapstock waste was the best substrate, generating 11.7 g/L of rhamnolipids with a surface tension of 26.9 mN/m, a critical micelle concentration of 51.5 mg/L, and a production yield of 75%. The monorhamnolipid RhaC10C10 predominates when P. aeruginosa LBI was cultivated on hydrophobic substrates, whereas hydrophilic carbon sources form the dirhamnolipid Rha2C10C10 predominantly. © 2005 American Chemical Society and American Institute of Chemical Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of multi-wavelength holography for surface shape measurement is presented. In our holographic setup a Bi12TiO 20 (BTO) photorefractive crystal was the holographic recording medium and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. The holographic imaging with multimode lasers results in multiple holograms in the BTO. By employing such lasers the resulting holographic image appears covered of interference fringes corresponding to the object relief and the interferogram spatial frequency is proportional to the diode laser free spectral range (FSR). We used a Fabry-Perot étalon at the laser output for laser mode selection. Thus, larger effective values of the laser FSR were achieved, leading to higher-spatial frequency interferograms and therefore to more sensitive and accurate measurements. The quantitative evaluation of the interferograms was performed through the phase stepping technique (PST) and the phase map unwrapping was carried out through the Cellular-Automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared, concerning measurement noise and visual inspection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four Mucor hiemalis strains (M1, M2, M3 and M4), isolated from soil at a depth of 0 - 15 cm in the Juréia-Itatins Ecology Station (JIES), in the state of São Paulo, Brazil and were evaluated for the production of γ-linolenic (GLA) and other unsaturated fatty acids. Five growth variables (temperature, pH, carbon source, nitrogen source, and vegetable oils) were studied. Liquid media containing 2% vegetable oil (palm oil, canola oil, soybean oil, sesame oil, or sunflower oil) or 2% carbohydrate (fructose, galactose, glycerol, glucose, lactose, maltose, sucrose, sorbitol or xylose) and 1% yeast extract as a nitrogen source were used. The greatest biomass production was observed with M3 and M4 strains in palm oil (91.5 g l -1) and sunflower oil (68.3 g l -1) media, respectively. Strain M4 produced greater quantities of polyunsaturated acids in medium containing glucose. The GLA production in the M4 biomass was 1,132.2 mg l -1 in glucose medium. Plant oils were inhibitors of fatty acid production by these strains. © 2007 Academic Journals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study sought biotensoactive production from soybean oil fry waste using Pseudomonas aeruginosa ATCC 10145 and Pseudomonas aeruginosa isolated from the soil of a petroleum station having undergone gasoline and diesel oil spills. The results of the experiments were analyzed using a complete factorial experimental design, investigating the concentration of soybean oil waste, ammonia sulfate and residual brewery yeast. Assays were performed in 250-mL Erlenmeyer beakers containing 50 mL of production medium, maintained on a rotary shaker at 200 rpm and a temperature of 30±1 °C for a 48-hour fermentation period. Biosurfactant production was monitored through the determination of rhamnose, surface tension and emulsification activity. The Pseudomonas aeruginosa ATCC 10145 strain and isolated Pseudomonas aeruginosa were able to reduce the surface tension of the initial mexlium from 61 mN/m to 32.5 mN/m and 30.0 mN/m as well as produce rhamnose at concentrations of 1.96 and 2.89 g/L with emulsification indices of 96% and 100%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclodextrin glycosyltransferase (CGTase) activity was produced by the Bacillus sp., subgroup alcalophilus in a culture medium containing cassava starch. A central composite design and response surface methodology were used to study the influence of carbon source (cassava starch), nitrogen sources (yeast extract and tryptone) and sodium carbonate in the production medium. Assays were performed in 300 mL Erlenmeyer flasks containing 100 mL of production medium maintained in a shaker at 150 rpm at 35±1°C for 72 h of fermentation. The independent variables [0.75% cassava starch, nitrogen sources (0.375% yeast extract and 0.375% tryptone) and 1% Na2CO3] produced an enzyme activity of 96.07 U mL-1.© Academic Journals Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate, using a biomechanical test, the force needed to remove implants with surface modification by laser (Nd:YAG) in comparison with implants with machined surfaces. Twenty-four rabbits received one implant with each surface treatment in the tibia, machined surface (MS) and laser-modified surface (LMS). After 4, 8 and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition and roughness. The average removal torque in each period was 23.28, 24.0 and 33.85 Ncm for MS, and 33.0, 39.87 and 54.57 Ncm for LMS, respectively. The difference between the surfaces in all periods of evaluation was statistically significant (p < 0.05). Surface characterization showed that a deep and regular topography was provided by the laser conditioning, with a great quantity of oxygen ions when compared to the MS. The surface micro-topography analysis showed a statistical difference (p < 0.01) between the roughness of the LMS (R a = 1.38 ± 0.23 μm) when compared to that of the MS (R a = 0.33 ± 0.06 μm). Based on these results, it was possible to conclude that the LMS implants' physical-chemical properties increased bone-implant interaction when compared to the MS implants. © 2009 Sociedade Brasileira de Pesquisa Odontológica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L(+) Lactic acid fermentation was studied by Lactobacillus rhamnosus sp. under the effects of pH control and a lowcost nutritional medium (sugarcane juice and corn steep liquor-CSL). Central composite design (CCD) was employed to determine maximum lactic acid production at optimum values for process variables and a satisfactory fit model was realized. Statistical analysis of the results showed that the linear and quadratic terms of two variables (sugarcane juice and pH) had significant effects. The interactions between the three variables were found to contribute to the response at a significant level. A second-order polynomial regression model estimated that the maximum lactic acid production of 86.36 g/L was obtained when the optimum values of sucrose, CSL and pH were 112.65 g/L, 29.88 g/L and 6.2, respectively. Verification of the optimization showed that L(+) lactic acid production was of 85.06 g/L. Under these conditions, Y P/S and Q P values of 0.85 g/g and 1.77 g/Lh, respectively, were obtained after 48 h fermentation, with a maximal productivity of 2.2 g/L h at 30 h of process. © 2010 de Lima CJB, et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Botryosphaeria rhodina MAMB-05 produced β-1,3-glucanases and botryosphaeran when grown on glucose, while Trichoderma harzianum Rifai only produced the enzyme. A comparison of long-term cultivation (300h) by B. rhodina demonstrated a correlation between the formation of botryosphaeran (48h) and its consumption (after 108h), and de-repression of β-1,3-glucanase synthesis when glucose was depleted from the nutrient medium, whereas for T. harzianum enzyme production commenced during exponential growth. Growth profiles and levels of β-1,3-glucanases produced by both fungi on botryosphaeran also differed, as well as the production of β-1,3-glucanases and β-1,6-glucanases on glucose, lactose, laminarin, botryosphaeran, lasiodiplodan, curdlan, Brewer's yeast powder and lyophilized fungal mycelium, which were dependent upon the carbon source used. A statistical mixture-design used to optimize β-1,3-glucanase production by both fungi evaluated botryosphaeran, glucose and lactose concentrations as variables. For B. rhodina, glucose and lactose promoted enzyme production at the same levels (2.30UmL -1), whereas botryosphaeran added to these substrates exerted a synergic effect favorable for β-glucanase production by T. harzianum (4.25UmL -1). © 2010 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feathers are rich in amino acids and can be employed as a dietary protein supplement for animal feed. Microbial degradation is an alternative technology for improving the nutritional value of feathers. Other potential applications of keratinase include use in the leather industry, detergents and medicine as well as the pharmaceutical for the treatment of acne, psoriasis and calluses. A new keratinolytic enzyme production bacterium was isolated from a poultry processing plant. To improve keratinase yield, statistically based experimental designs were applied to optimize three significant variables: temperature, substrate concentration (feathers) and agitation speed. Response surface methodology demonstrated an increase in keratinolytic activity at temperature, agitation speed and substrate concentration of 26.6°C, 150 rpm and 2%, respectively. Liquid chromatography revealed the release of amino acids in the Bacillus amyloliquefaciens culture broth, thereby demonstrating the potential of feather meal in the animal feed industry. © Global Science Publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microorganisms can produce lipases with different biochemical characteristics making necessary the screening of new lipase-producing strains for different industrial applications. In this study, 90 microbial strains were screened as potential lipase producers using a sensitive agar plate method with a suitable medium supplemented with Tween 20 and also a liquid culture supplemented with olive oil. The highest cell growth and lipase production for Candida viswanathii were observed in triolein and oleic acid when used as the only pure carbon source. Renewable low-cost triacylglycerols supported the best cell growth, and olive oil was found to be the best inducer for lipase production (19.50 g/L and 58.50 U). The selected conditions for enzyme production were found with yeast extract as nitrogen source and 1.5 % (w/v) olive oil (85.70 U) that resulted in a good cell growth yield (YX/S = 1.234 g/g) and lipase productivity (1.204 U/h) after 72 h of shake-flask cultivation. C. viswanathii lipase presented high hydrolytic activity on esters bonds of triacylglycerols of long-chain, and this strain can be considered an important candidate for future applications in chemical industries. © 2012 Springer-Verlag Berlin Heidelberg and the University of Milan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate commercially pure titanium implant surfaces modified by laser beam (LS) and LS associated with sodium silicate (SS) deposition, and compare them with machined surface (MS) and dual acid-etching surfaces (AS) modified. Topographic characterization was performed by scanning electron microscopy-X-ray energy dispersive spectroscopy (SEM-EDX), and by mean roughness measurement before surgery. Thirty rabbits received 60 implants in their right and left tibias. One implant of each surface in each tibia. The implants were removed by reverse torque for vivo biomechanical analysis at 30, 60, and 90 days postoperative. In addition, the surface of the implants removed at 30 days postoperative was analyzed by SEM-EDX. The topographic characterization showed differences between the analyzed surfaces, and the mean roughness values of LS and SS were statistically higher than AS and MS. At 30 days, values removal torque LS and SS groups showed a statistically significant difference (p < 0.05) when compared with MS and AS. At 60 days, groups LS and SS showed statistically significant difference (p < 0.05) when compared with MS. At 90 days, only group SS presented statistically higher (p < 0.05) in comparison with MS. The authors can conclude that physical chemistry properties and topographical of LS and SS implants increases bone-implant interaction and provides higher degree of osseointegration when compared with MS and AS. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the bone healing of defects filled with particulate bone graft in combination with platelet-rich plasma (PRP), added with a mixture of calcium chloride and thrombin or just calcium chloride. Two 5-mm bone defects were created in the calvaria of 24 rabbits. Each defect was filled with particulate bone graft and PRP. In one defect the PRP was activated by a mixture of calcium chloride and thrombin; in the other, PRP was activated by calcium chloride only. The animals were euthanized 1, 2, 4, and 8 weeks after the surgeries, and the calvaria was submitted to histologic processing for histomorphometric analysis. The qualitative analysis has shown that both defects presented the same histologic characteristics so that a better organized, more mature, and well-vascularized bone tissue was noticed in the eighth week. A good bone repair was achieved using either the mixture of calcium chloride and thrombin or the calcium chloride alone as a restarting agent of the coagulation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.