968 resultados para pk-yritys
Resumo:
A series of aryl monosulphides and disulphides have been synthesized and characterized. Their molecular hyperpolarizability (beta) has been measured in solution with the hyper-Rayleigh Scattering technique and also calculated by semiempirical AMI method. The trend in the observed and calculated values of first hyperpolarizability of these compounds has been found to be in good agreement. These compounds show moderate P values and excellent transparency in the visible region.
Resumo:
Several endogenous and exogenous chemical species, particularly the so-called reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), attack deoxyribonucleic acid (DNA) in biological systems producing DNA lesions which hamper normal cell functioning and cause various diseases including mutation and cancer. The guanine (G) base of DNA among all the bases is most susceptible and certain modified guanines get involved in mispairing with other bases during DNA replication. The biological system repairs the abnormal base pairs, but those that are still left cause mutation and cancer. Anti-oxidants present in biological systems can scavenge the ROS and RNOS. Thus three types of molecular events occur in biological media: (i) DNA damage, (ii) DNA repair, and (iii) prevention of DNA damage by scavenging ROS and RNOS. Quantum mechanical methods may be used to unravel molecular mechanisms of such phenomena. Some recent quantum theoretical results obtained on these problems are reviewed here.
Resumo:
A heterotroph Paenibacillus polymyxa bacteria is adapted to pyrite, chalcopyrite, galena and sphalerite minerals by repeated subculturing the bacteria in the presence of the mineral until their growth characteristics became similar to the growth in the absence of mineral. The unadapted and adapted bacterial surface have been chemically characterised by zeta-potential, contact angle, adherence to hydrocarbons and FT-IR spectroscopic studies. The surface free energies of bacteria have been calculated by following the equation of state and surface tension component approaches. The aim of the present paper is to understand the changes in surface chemical properties of bacteria during adaptation to sulfide minerals and the projected consequences in bioflotation and bioflocculation processes. The mineral-adapted cells became more hydrophilic as compared to unadapted cells. There are no significant changes in the surface charge of bacteria before and after adaptation, and all the bacteria exhibit an iso-electric point below pH 2.5. The contact angles are observed to be more reliable for hydrophobicity assessment than the adherence to hydrocarbons. The Lifschitz–van der Waals/acid–base approach to calculate surface free energy is found to be relevant for mineral–bacteria interactions. The diffuse reflectance FT-IR absorbance bands for all the bacteria are the same illustrating similar surface chemical composition. However, the intensity of the bands for unadapted and adapted cells is significantly varied and this is due to different amounts of bacterial secretions underlying different growth conditions.
Resumo:
Molecular complexes of melamine with hydroxy and dihydroxybenzoic acids have been analyzed to assess the collective role of the hydroxyl (OH) and carboxyl (COOH) functionalities in the recognition process. In most cases, solvents of crystallization do play a major role in self-assembly and structure stabilization. Hydrated compounds generate linear chains of melamine molecules with acid molecules pendant resulting in a zipper architecture. However, anhydrous and solvated compounds generate tetrameric units consisting of melamine dimers together with acid molecules. These tetramers in turn interweave to form a Lincoln log arrangement in the crystal. The salt/co-crystal formation in these complexes cannot be predicted apriori on the basis of Delta pK(a) values as there exists a salt-to-co-crystal continuum.
Resumo:
We have studied the behaviour of a charged particle in an axially symmetric magnetic field having a neutral point, so as to find a possibility of confining a charged particle in a thermonuclear device. In order to study the motion we have reduced a three-dimensional motion to a two-dimensional one by introducing a fictitious potential. Following Schmidt we have classified the motion, as an ‘off-axis motion’ and ‘encircling motion’ depending on the behaviour of this potential. We see that the particle performs a hybrid type of motion in the negative z-axis, i.e. at some instant it is in ‘off-axis motion’ while at another instant it is in ‘encircling motion’. We have also solved the equation of motion numerically and the graphs of the particle trajectory verify our analysis. We find that in most of the cases the particle is contained. The magnetic moment is found to be moderately adiabatic.
Resumo:
Electroluminescent zinc sulfide doped with copper and chloride (ZnS:Cu, Cl) powder was heated to 400°C and rapidly quenched to room temperature. Comparison between the quenched and non-quenched phosphors using synchrotron radiation X-ray powder diffraction (XRPD) (λ = 0.828692 Å) and X-ray absorption spectroscopy (XAS) was made. XRPD shows that the expected highly faulted structure is observed with excellent resolution out to 150° 2θ (or to (12 2 2) of the sphalerite phase). The quenched sample compared to the unheated sample shows a large change in peak ratios between 46.7° and 46.9°, which is thought to correspond to the wurtzite (0 0 6), (0 3 2) and sphalerite (3 3 3)/(5 1 1) peaks. Hence, a large proportion of this sphalerite diffraction is lost from the material upon rapid quenching, but not when the material is allowed to cool slowly. The Zn K-edge XAS data indicate that the crystalline structures are indistinguishable using this technique, but do give an indication that the electronic structure has altered due to changing intensity of the white line. It is noted that the blue electroluminescence (EL) emission bands are lost upon quenching: however, a large amount of total EL emission intensity is also removed, which is consistent with our findings. We report the XRPD of a working alternating-current electroluminescence device in the synchrotron X-ray beam, which exhibits a new diffraction pattern when the device is powered in an AC field even though the phosphor is fixed in the binder. Significantly, only a few crystals are required to yield the diffraction data because of the high flux X-ray source. These in panel data show multiple sharp diffraction lines spread out under the region, where capillary data show broad diffraction intensity indicating that the phosphor powder is comprised of unique crystals, each having different structures.
Resumo:
We analyze e(+)e(-) -> gamma gamma, e(-)gamma -> e(-)gamma and gamma gamma -> e(+)e(-) processes within the Seiberg-Witten expanded noncommutative scenario using polarized beams. With unpolarized beams the leading order effects of non commutativity starts from second order in non commutative(NC) parameter i.e. O(Theta(2)), while with polarized beams these corrections appear at first order (O(Theta')) in cross section. The corrections in Compton case can probe the magnetic component(Theta(B)) while in Pair production and Pair annihilation probe the electric component((Theta) over right arrow (E)) of NC parameter. We include the effects of earth rotation in our analysis. This study is done by investigating the effects of non commutativity on different time averaged cross section observables. The results which also depends on the position of the collider, can provide clear and distinct signatures of the model testable at the International Linear Collider(ILC).
Resumo:
In this paper we analyze a novel Micro Opto Electro Mechanical Systems (MOEMS) race track resonator based vibration sensor. In this vibration sensor the straight portion of a race track resonator is located at the foot of the cantilever beam with proof mass. As the beam deflects due to vibration, stress induced refractive change in the waveguide located over the beam lead to the wavelength shift providing the measure of vibration. A wavelength shift of 3.19 pm/g in the range of 280 g for a cantilever beam of 1750μm×450m×20μmhas been obtained. The maximum acceleration (breakdown) for these dimensions is 2900g when a safety factor of 2 is taken into account. Since the wavelength of operation is around 1.55μm hybrid integration of source and detector is possible on the same substrate. Also it is less amenable to noise as wavelength shift provides the sensor signal. This type of sensors can be used for aerospace application and other harsh environments with suitable design.
Resumo:
Mobile ad-hoc networks (MANETs) have recently drawn significant research attention since they offer unique benefits and versatility with respect to bandwidth spatial reuse, intrinsic fault tolerance, and low-cost rapid deployment. This paper addresses the issue of delay sensitive realtime data transport in these type of networks. An effective QoS mechanism is thereby required for the speedy transport of the realtime data. QoS issue in MANET is an open-end problem. Various QoS measures are incorporated in the upperlayers of the network, but a few techniques addresses QoS techniques in the MAC layer. There are quite a few QoS techniques in the MAC layer for the infrastructure based wireless network. The goal and the challenge is to achieve a QoS delivery and a priority access to the real time traffic in adhoc wireless environment, while maintaining democracy in the resource allocation. We propose a MAC layer protocol called "FCP based FAMA protocol", which allocates the channel resources to the needy in a more democratic way, by examining the requirements, malicious behavior and genuineness of the request. We have simulated both the FAMA as well as FCP based FAMA and tested in various MANET conditions. Simulated results have clearly shown a performance improvement in the channel utilization and a decrease in the delay parameters in the later case. Our new protocol outperforms the other QoS aware MAC layer protocols.
Resumo:
This paper addresses the problem of how to select the optimal number of sensors and how to determine their placement in a given monitored area for multimedia surveillance systems. We propose to solve this problem by obtaining a novel performance metric in terms of a probability measure for accomplishing the task as a function of set of sensors and their placement. This measure is then used to find the optimal set. The same measure can be used to analyze the degradation in system 's performance with respect to the failure of various sensors. We also build a surveillance system using the optimal set of sensors obtained based on the proposed design methodology. Experimental results show the effectiveness of the proposed design methodology in selecting the optimal set of sensors and their placement.