952 resultados para phytochrome mRNA
Understanding the mechanism of RNA degradation in the mammalian nonsense-mediated mRNA decay pathway
Resumo:
RNA localization is tightly coordinated with RNA stability and translation control. Bicaudal-D (Bic-D), Egalitarian (Egl), microtubules and their motors are part of a Drosophila transport machinery that localizes mRNAs to specific cellular regions during oogenesis and embryogenesis. We identified the Poly(A)-binding protein (Pabp) as a protein that forms an RNA-dependent complex with Bic-D in embryos and ovaries. pabp also interacts genetically with Bic-D and, similar to Bic-D, pabp is essential in the germline for oocyte growth and accumulation of osk mRNA in the oocyte. In the absence of pabp, reduced stability of osk mRNA and possibly also defects in osk mRNA transport prevent normal oocyte localization of osk mRNA. pabp also interacts genetically with osk and lack of one copy of pabp(+) causes osk to become haploinsufficient. Moreover, pointing to a poly(A)-independent role, Pabp binds to A-rich sequences (ARS) in the osk 3'UTR and these turned out to be required in vivo for osk function during early oogenesis. This effect of pabp on osk mRNA is specific for this RNA and other tested mRNAs localizing to the oocyte are less and more indirectly affected by the lack of pabp
Resumo:
The liver has an important role in metabolic regulation and control of the somatotropic axis to adapt successfully to physiological and environmental changes in dairy cows. The aim of this study was to investigate the adaptation to negative energy balance (NEB) at parturition and to a deliberately induced NEB by feed restriction at 100 days in milk. The hepatic gene expression and the endocrine system of the somatotropic axis and related parameters were compared between the early and late NEB period. Fifty multiparous cows were subjected to 3 periods (1=early lactation up to 12 wk postpartum, 2=feed restriction for 3 wk beginning at around 100 days in milk with a feed-restricted and a control group, and 3=subsequent realimentation period for the feed-restricted group for 8 wk). In period 1, plasma growth hormone reached a maximum in early lactation, whereas insulin-like growth factor-I (IGF-I), leptin, the thyroid hormones, insulin, and the revised quantitative insulin sensitivity check index increased gradually after a nadir in early lactation. Three days after parturition, hepatic mRNA abundance of growth hormone receptor 1A, IGF-I, IGF-I receptor and IGF-binding protein-3 (IGFBP-3) were decreased, whereas mRNA of IGFBP-1 and -2 and insulin receptor were upregulated as compared with wk 3 antepartum. During period 2, feed-restricted cows showed decreased plasma concentrations of IGF-I and leptin compared with those of control cows. The revised quantitative insulin sensitivity check index was lower for feed-restricted cows (period 2) than for control cows. Compared with the NEB in period 1, the changes due to the deliberately induced NEB (period 2) in hormones were less pronounced. At the end of the 3-wk feed restriction, the mRNA abundance of IGF-I, IGFBP-1, -2, -3, and insulin receptor was increased as compared with the control group. The different effects of energy deficiency at the 2 stages in lactation show that the endocrine regulation changes qualitatively and quantitatively during the course of lactation.
Resumo:
The objective was to study changes in plasma leptin concentration parallel to changes in the gene expression of lipogenic- and lipolytic-related genes in adipose tissue of dairy cows around parturition. Subcutaneous fat biopsies were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. Blood samples were assayed for concentrations of leptin and non-esterified fatty acids (NEFA). Subcutaneous adipose tissue was analysed for mRNA abundance by real-time qRT-PCR encoding for leptin, adiponectin receptor 1 (AdipoR1), adiponectin receptor 2 (AdipoR2), hormones-sensitive lipase (HSL), perilipin (PLIN), lipoprotein lipase (LPL), acyl-CoA synthase long-chain family member 1 (ACSL1), acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN) and glycerol-3-phosphate dehydrogenase 2 (GPD2). Body weight and body condition score of the cows were lower after parturition than before parturition. The calculated energy balance was negative in week 1 and 5 p.p., with higher negative energy balance in week 1 p.p. compared with that in week 5 p.p. On day 1 p.p., highest concentrations of NEFA (353.3 mumol/l) were detected compared with the other biopsy time-points (210.6 and 107.7 mumol/l, in week 8 a.p., and week 5 p.p. respectively). Reduced plasma concentrations of leptin during p.p. when compared with a.p. would favour increasing metabolic efficiency and energy conservation for mammary function and reconstitution of body reserves. Lower mRNA abundance of ACC and FASN expression on day 1 p.p. compared with other biopsy time-points suggests an attenuation of fatty acid synthesis in subcutaneous adipose tissue shortly after parturition. Gene expression of AdipoR1, AdipoR2, HSL, PLIN, LPL, ACSL1 and GPD2 was unchanged over time.
Resumo:
Liver tissue was collected from eight random dairy cows at a slaughterhouse to test if gene expression of pyruvate carboxylase (PC), mitochondrial phosphoenolpyruvate carboxykinase (PEPCKm) and cytosolic phosphoenolpyruvate carboxykinase (PEPCKc) is different at different locations in the liver. Obtained liver samples were analysed for mRNA expression levels of PC, PEPCKc and PEPCKm and subjected to the MIXED procedure of SAS to test for the sampled locations with cow liver as repeated subject. Additionally, the general linear model procedure (GLM) for analysis of variance was applied to test for significant differences for mRNA abundance of PEPCKm, PEPCKc and bPC between the livers. In conclusion, this study demonstrated that mRNA abundance of PC, PEPCKc and PEPCKm is not different between locations in the liver but may differ between individual cows.