840 resultados para passenger
Resumo:
The paper investigates train scheduling problems when prioritised trains and non-prioritised trains are simultaneously traversed in a single-line rail network. In this case, no-wait conditions arise because the prioritised trains such as express passenger trains should traverse continuously without any interruption. In comparison, non-prioritised trains such as freight trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available, which is thought of as a relaxation of no-wait conditions. With thorough analysis of the structural properties of the No-Wait Blocking Parallel-Machine Job-Shop-Scheduling (NWBPMJSS) problem that is originated in this research, an innovative generic constructive algorithm (called NWBPMJSS_Liu-Kozan) is proposed to construct the feasible train timetable in terms of a given order of trains. In particular, the proposed NWBPMJSS_Liu-Kozan constructive algorithm comprises several recursively-used sub-algorithms (i.e. Best-Starting-Time-Determination Procedure, Blocking-Time-Determination Procedure, Conflict-Checking Procedure, Conflict-Eliminating Procedure, Tune-up Procedure and Fine-tune Procedure) to guarantee feasibility by satisfying the blocking, no-wait, deadlock-free and conflict-free constraints. A two-stage hybrid heuristic algorithm (NWBPMJSS_Liu-Kozan-BIH) is developed by combining the NWBPMJSS_Liu-Kozan constructive algorithm and the Best-Insertion-Heuristic (BIH) algorithm to find the preferable train schedule in an efficient and economical way. Extensive computational experiments show that the proposed methodology is promising because it can be applied as a standard and fundamental toolbox for identifying, analysing, modelling and solving real-world scheduling problems.
Resumo:
Potential to strengthen a commitment to intervene within a friendship group: – all knew the other passengers, – 3 in 4 discussed intervening with other passengers, – expectations of friends was a key predictive factor. - young women have potential and willingness to intervene in their friends’ drink driving behaviour - majority of campaigns and strategies to reduce alcohol related crashes target the driver however it is arguable that some strategies should target the young female passenger.
Resumo:
1. Overview of hotspot identification (HSID)methods 2. Challenges with HSID 3. Bringing crash severity into the ‘mix’ 4. Case Study: Truck Involved Crashes in Arizona 5. Conclusions • Heavy duty trucks have different performance envelopes than passenger cars and have more difficulty weaving, accelerating, and braking • Passenger vehicles have extremely limited sight distance around trucks • Lane and shoulder widths affect truck crash risk more than passenger cars • Using PDOEs to model truck crashes results in a different set of locations to examine for possible engineering and behavioral problems • PDOE models point to higher societal cost locations, whereas frequency models point to higher crash frequency locations • PDOE models are less sensitive to unreported crashes • PDOE models are a great complement to existing practice
Resumo:
Public transportation is an environment with great potential for applying innovative ubiquitous computing services to enhance user experiences. This paper provides the underpinning rationale for research that will be looking at how real-time passenger information system deployed by transit authorities can provide a core platform to improve commuters’ user experiences during all stages of their journey. The proposal builds on this platform to inform the design and development of innovative social media, mobile computing and geospatial information applications, with the hope to create fun and meaningful experiences for passengers during their everyday travel. Furthermore, we present the findings of our pilot study that aims to offer a better understanding of passengers’ activities and social interactions during their daily commute.
Resumo:
Seat pressure is known as a major factor of seat comfort in vehicles. In passenger vehicles, there is lacking research into the seat comfort of rear seat occupants. As accurate seat pressure measurement requires significant effort, simulation of seat pressure is evolving as a preferred method. However, analytic methods are based on complex finite element modeling and therefore are time consuming and involve high investment. Based on accurate anthropometric measurements of 64 male subjects and outboard rear seat pressure measurements in three different passenger vehicles, this study investigates if a set of parameters derived from seat pressure mapping are sensitive enough to differentiate between different seats and whether they correlate with anthropometry in linear models. In addition to the pressure map analysis, H-Points were measured with a coordinate measurement system based on palpated body landmarks and the range of H-Point locations in the three seats is provided. It was found that for the cushion, cushion contact area and cushion front area/force could be modeled by subject anthropometry,while only seatback contact area could be modeled based on anthropometry for all three vehicles. Major differences were found between the vehicles for other parameters.
Resumo:
Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.
Resumo:
Observational seatbelt wearing studies are a valuable tool for obtaining up-to-date information about rates of use. Given that one quarter of vehicle occupants killed on Queensland roads in recent years were not wearing seatbelts, it is important that authorities are able to identify non-wearers and take steps to increase compliance with seatbelt laws to reduce the severity of crashes and, therefore, the road toll. An observational study of seatbelt use was conducted in metropolitan, regional and rural locations throughout Queensland in May and June, 2010. Trained observers took note of seatbelt use of all occupants of passenger vehicles, noting their gender, approximate age group, seating position, vehicle type, licence type (i.e. visible L or P plates), mobile phone use, and the date, time and location of the observation. Of 19,579 observations, 99.04% (19,391) of occupants were observed wearing seatbelts, as only 0.96% of occupants (188) were not wearing a seatbelt. There were differences in seatbelt wearing rates for a number of study variables, although most were very small. However, seatbelt wearing rates were 3.84% lower for drivers observed using a mobile phone than for those who were not. While compliance with seatbelt laws seems to be very high, it is still concerning that so few non-wearers represent a disproportionately large proportion of road fatalities and serious injuries in Queensland. Road safety authorities must therefore continue to find ways to improve seatbelt use, as small gains in wearing rates will translate into significant fatality reductions.
Resumo:
Airports represent the epitome of complex systems with multiple stakeholders, multiple jurisdictions and complex interactions between many actors. The large number of existing models that capture different aspects of the airport are a testament to this. However, these existing models do not consider in a systematic sense modelling requirements nor how stakeholders such as airport operators or airlines would make use of these models. This can detrimentally impact on the verification and validation of models and makes the development of extensible and reusable modelling tools difficult. This paper develops from the Concept of Operations (CONOPS) framework a methodology to help structure the review and development of modelling capabilities and usage scenarios. The method is applied to the review of existing airport terminal passenger models. It is found that existing models can be broadly categorised according to four usage scenarios: capacity planning, operational planning and design, security policy and planning, and airport performance review. The models, the performance metrics that they evaluate and their usage scenarios are discussed. It is found that capacity and operational planning models predominantly focus on performance metrics such as waiting time, service time and congestion whereas performance review models attempt to link those to passenger satisfaction outcomes. Security policy models on the other hand focus on probabilistic risk assessment. However, there is an emerging focus on the need to be able to capture trade-offs between multiple criteria such as security and processing time. Based on the CONOPS framework and literature findings, guidance is provided for the development of future airport terminal models.
Resumo:
Child passenger injury remains a major road safety issue despite advances in biomechanical understanding and child restraint design. In Australia, one intervention with parents to encourage universal and consistent use of the most appropriate restraint as well as draw their attention to critical aspects of installation is the RoadWise Type 1 Child Car Restraints Fitting Service, WA. A mixed methods evaluation of this service was conducted in early 2010. Evaluation results suggest that it has been effective in ensuring good quality training of child restraint fitters. In addition, stakeholder and user satisfaction with the Service is high, with participants agreeing that the Service is valuable to the community, and fitters regarding the training course, materials and post-training support as effective. However, a continuing issue for interventions of this type is whether the parents who need them perceive this need. Evidence from the evaluation suggests that only about 25% of parents who could benefit from the Service actually use it. This may be partly due to parental perceptions that such services are not necessary or relevant to them, or to overconfidence about the ease of installing restraints correctly. Thus there is scope for improving awareness of the Service amongst groups most likely to benefit from it (e.g. new parents) and for alerting parents to the importance of correct installation and getting their self-installed restraints checked. Efforts to inform and influence parents should begin when their children are very young, preferably at or prior to birth and/or before the parent installs the first restraint.
Resumo:
Motor vehicle crashes are a leading cause of death among young people. Fourteen percent of adolescents aged 13-14 report passenger-related injuries within three months. Intervention programs typically focus on young drivers and overlook passengers as potential protective influences. Graduated Driver Licensing restricts passenger numbers, and this study focuses on a complementary school-based intervention to increase passengers’ personal- and peer-protective behavior. The aim of this research was to assess the impact of the curriculum-based injury prevention program, Skills for Preventing Injury in Youth (SPIY), on passenger-related risk-taking and injuries, and intentions to intervene in friends’ risky road behavior. SPIY was implemented in Grade 8 Health classes and evaluated using survey and focus group data from 843 students across 10 Australian secondary schools. Intervention students reported less passenger-related risk-taking six months following the program. Their intention to protect friends from underage driving also increased. The results of this study show that a comprehensive, school-based program targeting individual and social changes can increase adolescent passenger safety.
Resumo:
Unmanned Aircraft Systems (UAS) describe a diverse range of aircraft that are operated without a human pilot on-board. Unmanned aircraft range from small rotorcraft, which can fit in the palm of your hand, through to fixed wing aircraft comparable in size to that of a commercial passenger jet. The absence of a pilot on-board allows these aircraft to be developed with unique performance capabilities facilitating a wide range of applications in surveillance, environmental management, agriculture, defence, and search and rescue. However, regulations relating to the safe design and operation of UAS first need to be developed before the many potential benefits from these applications can be realised. According to the International Civil Aviation Organization (ICAO), a Risk Management Process (RMP) should support all civil aviation policy and rulemaking activities (ICAO 2009). The RMP is described in International standard, ISO 31000:2009 (ISO, 2009a). This standard is intentionally generic and high-level, providing limited guidance on how it can be effectively applied to complex socio-technical decision problems such as the development of regulations for UAS. Through the application of principles and tools drawn from systems philosophy and systems engineering, this thesis explores how the RMP can be effectively applied to support the development of safety regulations for UAS. A sound systems-theoretic foundation for the RMP is presented in this thesis. Using the case-study scenario of a UAS operation over an inhabited area and through the novel application of principles drawn from general systems modelling philosophy, a consolidated framework of the definitions of the concepts of: safe, risk and hazard is made. The framework is novel in that it facilitates the representation of broader subjective factors in an assessment of the safety of a system; describes the issues associated with the specification of a system-boundary; makes explicit the hierarchical nature of the relationship between the concepts and the subsequent constraints that exist between them; and can be evaluated using a range of analytic or deliberative modelling techniques. Following the general sequence of the RMP, the thesis explores the issues associated with the quantified specification of safety criteria for UAS. A novel risk analysis tool is presented. In contrast to existing risk tools, the analysis tool presented in this thesis quantifiably characterises both the societal and individual risk of UAS operations as a function of the flight path of the aircraft. A novel structuring of the risk evaluation and risk treatment decision processes is then proposed. The structuring is achieved through the application of the Decision Support Problem Technique; a modelling approach that has been previously used to effectively model complex engineering design processes and to support decision-making in relation to airspace design. The final contribution made by this thesis is in the development of an airworthiness regulatory framework for civil UAS. A novel "airworthiness certification matrix" is proposed as a basis for the definition of UAS "Part 21" regulations. The outcome airworthiness certification matrix provides a flexible, systematic and justifiable method for promulgating airworthiness regulations for UAS. In addition, an approach for deriving "Part 1309" regulations for UAS is presented. In contrast to existing approaches, the approach presented in this thesis facilitates a traceable and objective tailoring of system-level reliability requirements across the diverse range of UAS operations. The significance of the research contained in this thesis is clearly demonstrated by its practical real world outcomes. Industry regulatory development groups and the Civil Aviation Safety Authority have endorsed the proposed airworthiness certification matrix. The risk models have also been used to support research undertaken by the Australian Department of Defence. Ultimately, it is hoped that the outcomes from this research will play a significant part in the shaping of regulations for civil UAS, here in Australia and around the world.
Resumo:
Newly licensed drivers on a provisional or intermediate licence have the highest crash risk when compared with any other group of drivers. In comparison, learner drivers have the lowest crash risk. Graduated driver licensing is one countermeasure that has been demonstrated to effectively reduce the crashes of novice drivers. This thesis examined the graduated driver licensing systems in two Australian states in order to better understand the behaviour of learner drivers, provisional drivers and the supervisors of learner drivers. By doing this, the thesis investigated the personal, social and environmental influences on novice driver behaviour as well as providing effective baseline data against which to measure subsequent changes to the licensing systems. In the first study, conducted prior to the changes to the graduated driver licensing system introduced in mid-2007, drivers who had recently obtained their provisional licence in Queensland and New South Wales were interviewed by telephone regarding their experiences while driving on their learner licence. Of the 687 eligible people approached to participate at driver licensing centres, 392 completed the study representing a response rate of 57.1 per cent. At the time the data was collected, New South Wales represented a more extensive graduated driver licensing system when compared with Queensland. The results suggested that requiring learners to complete a mandated number of hours of supervised practice impacts on the amount of hours that learners report completing. While most learners from New South Wales reported meeting the requirement to complete 50 hours of practice, it appears that many stopped practising soon after this goal was achieved. In contrast, learners from Queensland, who were not required to complete a specific number of hours at the time of the survey, tended to fall into three groups. The first group appeared to complete the minimum number of hours required to pass the test (less than 26 hours), the second group completed 26 to 50 hours of supervised practice while the third group completed significantly more practice than the first two groups (over 100 hours of supervised practice). Learner drivers in both states reported generally complying with the road laws and were unlikely to report that they had been caught breaking the road rules. They also indicated that they planned to obey the road laws once they obtained their provisional licence. However, they were less likely to intend to comply with recommended actions to reduce crash risk such as limiting their driving at night. This study also identified that there were relatively low levels of unaccompanied driving (approximately 15 per cent of the sample), very few driving offences committed (five per cent of the sample) and that learner drivers tended to use a mix of private and professional supervisors (although the majority of practice is undertaken with private supervisors). Consistent with the international literature, this study identified that very few learner drivers had experienced a crash (six per cent) while on their learner licence. The second study was also conducted prior to changes to the graduated driver licensing system and involved follow up interviews with the participants of the first study after they had approximately 21 months driving experience on their provisional licence. Of the 392 participants that completed the first study, 233 participants completed the second interview (representing a response rate of 59.4 per cent). As with the first study, at the time the data was collected, New South Wales had a more extensive graduated driver licensing system than Queensland. For instance, novice drivers from New South Wales were required to progress through two provisional licence phases (P1 and P2) while there was only one provisional licence phase in Queensland. Among the participants in this second study, almost all provisional drivers (97.9 per cent) owned or had access to a vehicle for regular driving. They reported that they were unlikely to break road rules, such as driving after a couple of drinks, but were also unlikely to comply with recommended actions, such as limiting their driving at night. When their provisional driving behaviour was compared to the stated intentions from the first study, the results suggested that their intentions were not a strong predictor of their subsequent behaviour. Their perception of risk associated with driving declined from when they first obtained their learner licence to when they had acquired provisional driving experience. Just over 25 per cent of participants in study two reported that they had been caught committing driving offences while on their provisional licence. Nearly one-third of participants had crashed while driving on a provisional licence, although few of these crashes resulted in injuries or hospitalisations. To complement the first two studies, the third study examined the experiences of supervisors of learner drivers, as well as their perceptions of their learner’s experiences. This study was undertaken after the introduction of the new graduated driver licensing systems in Queensland and New South Wales in mid- 2007, providing insights into the impacts of these changes from the perspective of supervisors. The third study involved an internet survey of 552 supervisors of learner drivers. Within the sample, approximately 50 per cent of participants supervised their own child. Other supervisors of the learner drivers included other parents or stepparents, professional driving instructors and siblings. For two-thirds of the sample, this was the first learner driver that they had supervised. Participants had provided an average of 54.82 hours (sd = 67.19) of supervision. Seventy-three per cent of participants indicated that their learners’ logbooks were accurate or very accurate in most cases, although parents were more likely than non-parents to report that their learners’ logbook was accurate (F (1,546) = 7.74, p = .006). There was no difference between parents and non-parents regarding whether they believed the log book system was effective (F (1,546) = .01, p = .913). The majority of the sample reported that their learner driver had had some professional driving lessons. Notwithstanding this, a significant proportion (72.5 per cent) believed that parents should be either very involved or involved in teaching their child to drive, with parents being more likely than non-parents to hold this belief. In the post mid-2007 graduated driver licensing system, Queensland learner drivers are able to record three hours of supervised practice in their log book for every hour that is completed with a professional driving instructor, up to a total of ten hours. Despite this, there was no difference identified between Queensland and New South Wales participants regarding the amount of time that they reported their learners spent with professional driving instructors (X2(1) = 2.56, p = .110). Supervisors from New South Wales were more likely to ensure that their learner driver complied with the road laws. Additionally, with the exception of drug driving laws, New South Wales supervisors believed it was more important to teach safety-related behaviours such as remaining within the speed limit, car control and hazard perception than those from Queensland. This may be indicative of more intensive road safety educational efforts in New South Wales or the longer time that graduated driver licensing has operated in that jurisdiction. However, other factors may have contributed to these findings and further research is required to explore the issue. In addition, supervisors reported that their learner driver was involved in very few crashes (3.4 per cent) and offences (2.7 per cent). This relatively low reported crash rate is similar to that identified in the first study. Most of the graduated driver licensing research to date has been applied in nature and lacked a strong theoretical foundation. These studies used Akers’ social learning theory to explore the self-reported behaviour of novice drivers and their supervisors. This theory was selected as it has previously been found to provide a relatively comprehensive framework for explaining a range of driver behaviours including novice driver behaviour. Sensation seeking was also used in the first two studies to complement the non-social rewards component of Akers’ social learning theory. This program of research identified that both Akers’ social learning theory and sensation seeking were useful in predicting the behaviour of learner and provisional drivers over and above socio-demographic factors. Within the first study, Akers’ social learning theory accounted for an additional 22 per cent of the variance in learner driver compliance with the law, over and above a range of socio-demographic factors such as age, gender and income. The two constructs within Akers’ theory which were significant predictors of learner driver compliance were the behavioural dimension of differential association relating to friends, and anticipated rewards. Sensation seeking predicted an additional six per cent of the variance in learner driver compliance with the law. When considering a learner driver’s intention to comply with the law while driving on a provisional licence, Akers’ social learning theory accounted for an additional 10 per cent of the variance above socio-demographic factors with anticipated rewards being a significant predictor. Sensation seeking predicted an additional four per cent of the variance. The results suggest that the more rewards individuals anticipate for complying with the law, the more likely they are to obey the road rules. Further research is needed to identify which specific rewards are most likely to encourage novice drivers’ compliance with the law. In the second study, Akers’ social learning theory predicted an additional 40 per cent of the variance in self-reported compliance with road rules over and above socio-demographic factors while sensation seeking accounted for an additional five per cent of the variance. A number of Aker’s social learning theory constructs significantly predicted provisional driver compliance with the law, including the behavioural dimension of differential association for friends, the normative dimension of differential association, personal attitudes and anticipated punishments. The consistent prediction of additional variance by sensation seeking over and above the variables within Akers’ social learning theory in both studies one and two suggests that sensation seeking is not fully captured within the non social rewards dimension of Akers’ social learning theory, at least for novice drivers. It appears that novice drivers are strongly influenced by the desire to engage in new and intense experiences. While socio-demographic factors and the perception of risk associated with driving had an important role in predicting the behaviour of the supervisors of learner drivers, Akers’ social learning theory provided further levels of prediction over and above these factors. The Akers’ social learning theory variables predicted an additional 14 per cent of the variance in the extent to which supervisors ensured that their learners complied with the law and an additional eight per cent of the variance in the supervisors’ provision of a range of practice experiences. The normative dimension of differential association, personal attitudes towards the use of professional driving instructors and anticipated rewards were significant predictors for supervisors ensuring that their learner complied with the road laws, while the normative dimension was important for range of practice. This suggests that supervisors who engage with other supervisors who ensure their learner complies with the road laws and provide a range of practice to their own learners are more likely to also engage in these behaviours. Within this program of research, there were several limitations including the method of recruitment of participants within the first study, the lower participation rate in the second study, an inability to calculate a response rate for study three and the use of self-report data for all three studies. Within the first study, participants were only recruited from larger driver licensing centres to ensure that there was a sufficient throughput of drivers to approach. This may have biased the results due to the possible differences in learners that obtain their licences in locations with smaller licensing centres. Only 59.4 per cent of the sample in the first study completed the second study. This may be a limitation if there was a common reason why those not participating were unable to complete the interview leading to a systematic impact on the results. The third study used a combination of a convenience and snowball sampling which meant that it was not possible to calculate a response rate. All three studies used self-report data which, in many cases, is considered a limitation. However, self-report data may be the only method that can be used to obtain some information. This program of research has a number of implications for countermeasures in both the learner licence phase and the provisional licence phase. During the learner phase, licensing authorities need to carefully consider the number of hours that they mandate learner drivers must complete before they obtain their provisional driving licence. If they mandate an insufficient number of hours, there may be inadvertent negative effects as a result of setting too low a limit. This research suggests that logbooks may be a useful tool for learners and their supervisors in recording and structuring their supervised practice. However, it would appear that the usage rates for logbooks will remain low if they remain voluntary. One strategy for achieving larger amounts of supervised practice is for learner drivers and their supervisors to make supervised practice part of their everyday activities. As well as assisting the learner driver to accumulate the required number of hours of supervised practice, it would ensure that they gain experience in the types of environments that they will probably encounter when driving unaccompanied in the future, such as to and from education or work commitments. There is also a need for policy processes to ensure that parents and professional driving instructors communicate effectively regarding the learner driver’s progress. This is required as most learners spend at least some time with a professional instructor despite receiving significant amounts of practice with a private supervisor. However, many supervisors did not discuss their learner’s progress with the driving instructor. During the provisional phase, there is a need to strengthen countermeasures to address the high crash risk of these drivers. Although many of these crashes are minor, most involve at least one other vehicle. Therefore, there are social and economic benefits to reducing these crashes. If the new, post-2007 graduated driver licensing systems do not significantly reduce crash risk, there may be a need to introduce further provisional licence restrictions such as separate night driving and peer passenger restrictions (as opposed to the hybrid version of these two restrictions operating in both Queensland and New South Wales). Provisional drivers appear to be more likely to obey some provisional licence laws, such as lower blood alcohol content limits, than others such as speed limits. Therefore, there may be a need to introduce countermeasures to encourage provisional drivers to comply with specific restrictions. When combined, these studies provided significant information regarding graduated driver licensing programs. This program of research has investigated graduated driver licensing utilising a cross-sectional and longitudinal design in order to develop our understanding of the experiences of novice drivers that progress through the system in order to help reduce crash risk once novice drivers commence driving by themselves.
Resumo:
Motorcycles are particularly vulnerable in right-angle crashes at signalized intersections. The objective of this study is to explore how variations in roadway characteristics, environmental factors, traffic factors, maneuver types, human factors as well as driver demographics influence the right-angle crash vulnerability of motorcycles at intersections. The problem is modeled using a mixed logit model with a binary choice category formulation to differentiate how an at-fault vehicle collides with a not-at-fault motorcycle in comparison to other collision types. The mixed logit formulation allows randomness in the parameters and hence takes into account the underlying heterogeneities potentially inherent in driver behavior, and other unobserved variables. A likelihood ratio test reveals that the mixed logit model is indeed better than the standard logit model. Night time riding shows a positive association with the vulnerability of motorcyclists. Moreover, motorcyclists are particularly vulnerable on single lane roads, on the curb and median lanes of multi-lane roads, and on one-way and two-way road type relative to divided-highway. Drivers who deliberately run red light as well as those who are careless towards motorcyclists especially when making turns at intersections increase the vulnerability of motorcyclists. Drivers appear more restrained when there is a passenger onboard and this has decreased the crash potential with motorcyclists. The presence of red light cameras also significantly decreases right-angle crash vulnerabilities of motorcyclists. The findings of this study would be helpful in developing more targeted countermeasures for traffic enforcement, driver/rider training and/or education, safety awareness programs to reduce the vulnerability of motorcyclists.
Resumo:
The fatality and injury rate of motorcyclists per registered vehicle are higher than those of other motor vehicles by 13 and 7 times respectively. The crash involvement rate of motorcyclists as a victim party is 58% at intersections and as an offending party is 67% at expressways. Previous research efforts showed that the motorcycle safety programs are not very effective in improving motorcycle safety. This is perhaps due to inefficient design of safety program as specific causal factors may not be well explored. The objective of this study is to propose more sophisticated countermeasures and awareness programs for improving motorcycle safety after analyzing specific causal factors for motorcycle crashes at intersections and expressways. Methodologically this study applies the binary logistic model to explore the at-fault or not-at-fault crash involvement of motorcyclists at those locations. A number of explanatory variables representing roadway characteristics, environmental factors, motorcycle descriptions, and rider demographics have been evaluated. Results shows that the night time crash occurrence, presence of red light camera, lane position, rider age, licence class, and multivehicle collision significantly affect the fault of motorcyclists involved in crashes at intersections. On the other hand, the night time crash occurrence, lane position, speed limit, rider age, licence class, engine capacity, riding with pillion passenger, foreign registered motorcycles, and multivehicle collision has been found to be significant at expressways. Legislate to wear reflective clothes and using reflective markings on the motorcycles and helmets are suggested as an effective countermeasure for reducing their vulnerability. The red light cameras at intersections reduce the vulnerability of motorcycles and hence motorcycle flow and motorcycle crashes should be considered during installation of red light cameras. At signalized intersections, motorcyclists may be taught to follow correct movement and queuing rather than weaving through the traffic as it leads them to become victims of other motorists. The riding simulators in the training centers can be useful to demonstrate the proper movement and queuing at junctions. Riding with pillion passenger and excess speed at expressways are found to significantly influence the at at-fault crash involvement of the motorcyclists. Hence the motorcyclists should be advised to concentrate more on riding while riding with pillion passenger and encouraged to avoid excess speed at expressways. Very young and very older group of riders are found to be at-fault than middle aged groups. Hence this group of riders should be targeted for safety improvement. This can be done by arranging safety talks and programs in motorcycling clubs in colleges and universities as well as community riding clubs with high proportion of elderly riders. It is recommended that the driving centers may use the findings of this study to include in licensure program to make motorcyclists more aware of the different factors which expose the motorcyclists to crash risks so that more defensive riding may be needed.
Resumo:
Flexibility is a key driver of any successful design, specifically in highly unpredictable environment such as airport terminal. Ever growing aviation industry requires airport terminals to be planned and constructed in such a way that will allow flexibility for future design, alteration and redevelopment. The concept of flexibility in terminal design is a relatively new initiative, where existing rules or guidelines are not adequate to assist designers. A shift towards flexible design concept would allow terminal buildings to be designed to accommodate future changes and to make passengers’ journey as simple, timely and hassle free as possible. Currently available research indicates that a theoretical framework on flexible design approach for airport terminals would facilitate the future design process. The generic principles of flexibility are investigated in the current research to incorporate flexible design approaches within the process of an airport terminal design. A conceptual framework is proposed herein, which is expected to ascertain flexibility to current passenger terminal facilities within their corresponding locations as well as in future design and expansion.