992 resultados para parameter uncertainty
Resumo:
This article addresses uncertainty effect on the health monitoring of a smart structure using control gain shifts as damage indicators. A finite element model of the smart composite plate with surface-bonded piezoelectric sensors and actuators is formulated using first-order shear deformation theory and a matrix crack model is integrated into the finite element model. A constant gain velocity/position feedback control algorithm is used to provide active damping to the structure. Numerical results show that the response of the structure is changed due to matrix cracks and this change can be compensated by actively tuning the feedback controller. This change in control gain can be used as a damage indicator for structural health monitoring. Monte Carlo simulation is conducted to study the effect of material uncertainty on the damage indicator by considering composite material properties and piezoelectric coefficients as independent random variables. It is found that the change in position feedback control gain is a robust damage indicator.
Resumo:
We define lacunary Fourier series on a compact connected semisimple Lie group G. If f is an element of L-1 (G) has lacunary Fourier series and f vanishes on a non empty open subset of G, then we prove that f vanishes identically. This result can be viewed as a qualitative uncertainty principle.
Resumo:
Beavers are often found to be in conflict with human interests by creating nuisances like building dams on flowing water (leading to flooding), blocking irrigation canals, cutting down timbers, etc. At the same time they contribute to raising water tables, increased vegetation, etc. Consequently, maintaining an optimal beaver population is beneficial. Because of their diffusion externality (due to migratory nature), strategies based on lumped parameter models are often ineffective. Using a distributed parameter model for beaver population that accounts for their spatial and temporal behavior, an optimal control (trapping) strategy is presented in this paper that leads to a desired distribution of the animal density in a region in the long run. The optimal control solution presented, imbeds the solution for a large number of initial conditions (i.e., it has a feedback form), which is otherwise nontrivial to obtain. The solution obtained can be used in real-time by a nonexpert in control theory since it involves only using the neural networks trained offline. Proper orthogonal decomposition-based basis function design followed by their use in a Galerkin projection has been incorporated in the solution process as a model reduction technique. Optimal solutions are obtained through a "single network adaptive critic" (SNAC) neural-network architecture.
Resumo:
A new computational tool is presented in this paper for suboptimal control design of a class of nonlinear distributed parameter systems. First proper orthogonal decomposition based problem-oriented basis functions are designed, which are then used in a Galerkin projection to come up with a low-order lumped parameter approximation. Next, a suboptimal controller is designed using the emerging /spl thetas/-D technique for lumped parameter systems. This time domain sub-optimal control solution is then mapped back to the distributed domain using the same basis functions, which essentially leads to a closed form solution for the controller in a state feedback form. Numerical results for a real-life nonlinear temperature control problem indicate that the proposed method holds promise as a good suboptimal control design technique for distributed parameter systems.
Resumo:
Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved. It has been demonstrated that a desired temperature profile can be achieved starting from any arbitrary initial temperature profile.
Resumo:
Predictions of two popular closed-form models for unsaturated hydraulic conductivity (K) are compared with in situ measurements made in a sandy loam field soil. Whereas the Van Genuchten model estimates were very close to field measured values, the Brooks-Corey model predictions were higher by about one order of magnitude in the wetter range. Estimation of parameters of the Van Genuchten soil moisture characteristic (SMC) equation, however, involves the use of non-linear regression techniques. The Brooks-Corey SMC equation has the advantage of being amenable to application of linear regression techniques for estimation of its parameters from retention data. A conversion technique, whereby known Brooks-Corey model parameters may be converted into Van Genuchten model parameters, is formulated. The proposed conversion algorithm may be used to obtain the parameters of the preferred Van Genuchten model from in situ retention data, without the use of non-linear regression techniques.
Resumo:
Nonlinear static and dynamic response analyses of a clamped. rectangular composite plate resting on a two-parameter elastic foundation have been studied using von Karman's relations. Incorporating the material damping, the governing coupled, nonlinear partial differential equations are obtained for the plate under step pressure pulse load excitation. These equations have been solved by a one-term solution and by applying Galerkin's technique to the deflection equation. This yields an ordinary nonlinear differential equation in time. The nonlinear static solution is obtained by neglecting the time-dependent variables. Thc nonlinear dynamic damped response is obtained by applying the ultraspherical polynomial approximation (UPA) technique. The influences of foundation modulus, shear modulus, orthotropy, etc. upon the nonlinear static and dynamic responses have been presented.
Resumo:
Atomic vibration in the Carbon Nanotubes (CNTs) gives rise to non-local interactions. In this paper, an expression for the non-local scaling parameter is derived as a function of the geometric and electronic properties of the rolled graphene sheet in single-walled CNTs. A self-consistent method is developed for the linearization of the problem of ultrasonic wave propagation in CNTs. We show that (i) the general three-dimensional elastic problem leads to a single non-local scaling parameter (e(0)), (ii) e(0) is almost constant irrespective of chirality of CNT in the case of longitudinal wave propagation, (iii) e(0) is a linear function of diameter of CNT for the case of torsional mode of wave propagation, (iv) e(0) in the case of coupled longitudinal-torsional modes of wave propagation, is a function which exponentially converges to that of axial mode at large diameters and to torsional mode at smaller diameters. These results are valid in the long-wavelength limit. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The weighted-least-squares method based on the Gauss-Newton minimization technique is used for parameter estimation in water distribution networks. The parameters considered are: element resistances (single and/or group resistances, Hazen-Williams coefficients, pump specifications) and consumptions (for single or multiple loading conditions). The measurements considered are: nodal pressure heads, pipe flows, head loss in pipes, and consumptions/inflows. An important feature of the study is a detailed consideration of the influence of different choice of weights on parameter estimation, for error-free data, noisy data, and noisy data which include bad data. The method is applied to three different networks including a real-life problem.
Resumo:
To evaluate the parameters in the two-parameter fracture model, i.e. the critical stress intensity factor and critical crack tip opening displacement for the fracture of plain concrete in Mode 1 for the given test configuration and geometry, considerable computational effort is necessary. A simple graphical method has been proposed using normalized fracture parameters for the three-point bend (3PB) notched specimen and the double-edged notched (DEN) specimen. A similar graphical method is proposed to compute the maximum load carrying capacity of a specimen, using the critical fracture parameters both for 3PB and DEN configurations.
Resumo:
In this paper, the critical budding temperature of single-walled carbon nanotubes (SWCNTs), which are embedded in one-parameter elastic medium (Winkler foundation) is estimated under the umbrella of continuum mechanics theory. Nonlocal continuum theory is incorporated into Timoshenko beam model and the governing differential equations of motion are derived. An explicit expression for the non-dimensional critical buckling temperature is also derived in this work. The effect of the nonlocal small scale coefficient, the Winkler foundation parameter and the ratio of the length to the diameter on the critical buckling temperature is investigated in detail. It can be observed that the effects of nonlocal small scale parameter and the Winkler foundation parameter are significant and should be considered for thermal analysis of SWCNTs. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of embedded single-walled carbon nanotubes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Perfect or even mediocre weather predictions over a long period are almost impossible because of the ultimate growth of a small initial error into a significant one. Even though the sensitivity of initial conditions limits the predictability in chaotic systems, an ensemble of prediction from different possible initial conditions and also a prediction algorithm capable of resolving the fine structure of the chaotic attractor can reduce the prediction uncertainty to some extent. All of the traditional chaotic prediction methods in hydrology are based on single optimum initial condition local models which can model the sudden divergence of the trajectories with different local functions. Conceptually, global models are ineffective in modeling the highly unstable structure of the chaotic attractor. This paper focuses on an ensemble prediction approach by reconstructing the phase space using different combinations of chaotic parameters, i.e., embedding dimension and delay time to quantify the uncertainty in initial conditions. The ensemble approach is implemented through a local learning wavelet network model with a global feed-forward neural network structure for the phase space prediction of chaotic streamflow series. Quantification of uncertainties in future predictions are done by creating an ensemble of predictions with wavelet network using a range of plausible embedding dimensions and delay times. The ensemble approach is proved to be 50% more efficient than the single prediction for both local approximation and wavelet network approaches. The wavelet network approach has proved to be 30%-50% more superior to the local approximation approach. Compared to the traditional local approximation approach with single initial condition, the total predictive uncertainty in the streamflow is reduced when modeled with ensemble wavelet networks for different lead times. Localization property of wavelets, utilizing different dilation and translation parameters, helps in capturing most of the statistical properties of the observed data. The need for taking into account all plausible initial conditions and also bringing together the characteristics of both local and global approaches to model the unstable yet ordered chaotic attractor of a hydrologic series is clearly demonstrated.
Resumo:
We report Doppler-only radar observations of Icarus at Goldstone at a transmitter frequency of 8510 MHz (3.5 cm wavelength) during 8-10 June 1996, the first radar detection of the object since 1968. Optimally filtered and folded spectra achieve a maximum opposite-circular (OC) polarization signal-to-noise ratio of about 10 and help to constrain Icarus' physical properties. We obtain an OC radar cross section of 0.05 km(2) (with a 35% uncertainty), which is less than values estimated by Goldstein (1969) and by Pettengill et al. (1969), and a circular polarization (SC/OC) ratio of 0.5+/-0.2. We analyze the echo power spectrum with a model incorporating the echo bandwidth B and a spectral shape parameter it, yielding a coupled constraint between B and n. We adopt 25 Hz as the lower bound on B, which gives a lower bound on the maximum pole-on breadth of about 0.6 km and upper bounds on the radar and optical albedos that are consistent with Icarus' tentative QS classification. The observed circular polarization ratio indicates a very rough near-surface at spatial scales of the order of the radar wavelength. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
High sensitivity detection techniques are required for indoor navigation using Global Navigation Satellite System (GNSS) receivers, and typically, a combination of coherent and non- coherent integration is used as the test statistic for detection. The coherent integration exploits the deterministic part of the signal and is limited due to the residual frequency error, navigation data bits and user dynamics, which are not known apriori. So, non- coherent integration, which involves squaring of the coherent integration output, is used to improve the detection sensitivity. Due to this squaring, it is robust against the artifacts introduced due to data bits and/or frequency error. However, it is susceptible to uncertainty in the noise variance, and this can lead to fundamental sensitivity limits in detecting weak signals. In this work, the performance of the conventional non-coherent integration-based GNSS signal detection is studied in the presence of noise uncertainty. It is shown that the performance of the current state of the art GNSS receivers is close to the theoretical SNR limit for reliable detection at moderate levels of noise uncertainty. Alternate robust post-coherent detectors are also analyzed, and are shown to alleviate the noise uncertainty problem. Monte-Carlo simulations are used to confirm the theoretical predictions.
Resumo:
We study the problem of uncertainty in the entries of the Kernel matrix, arising in SVM formulation. Using Chance Constraint Programming and a novel large deviation inequality we derive a formulation which is robust to such noise. The resulting formulation applies when the noise is Gaussian, or has finite support. The formulation in general is non-convex, but in several cases of interest it reduces to a convex program. The problem of uncertainty in kernel matrix is motivated from the real world problem of classifying proteins when the structures are provided with some uncertainty. The formulation derived here naturally incorporates such uncertainty in a principled manner leading to significant improvements over the state of the art. 1.