912 resultados para pacs: neural computing technologies
Resumo:
En el campo de la medicina clínica es crucial poder determinar la seguridad y la eficacia de los fármacos actuales y además acelerar el descubrimiento de nuevos compuestos activos. Para ello se llevan a cabo ensayos de laboratorio, que son métodos muy costosos y que requieren mucho tiempo. Sin embargo, la bioinformática puede facilitar enormemente la investigación clínica para los fines mencionados, ya que proporciona la predicción de la toxicidad de los fármacos y su actividad en enfermedades nuevas, así como la evolución de los compuestos activos descubiertos en ensayos clínicos. Esto se puede lograr gracias a la disponibilidad de herramientas de bioinformática y métodos de cribado virtual por ordenador (CV) que permitan probar todas las hipótesis necesarias antes de realizar los ensayos clínicos, tales como el docking estructural, mediante el programa BINDSURF. Sin embargo, la precisión de la mayoría de los métodos de CV se ve muy restringida a causa de las limitaciones presentes en las funciones de afinidad o scoring que describen las interacciones biomoleculares, e incluso hoy en día estas incertidumbres no se conocen completamente. En este trabajo abordamos este problema, proponiendo un nuevo enfoque en el que las redes neuronales se entrenan con información relativa a bases de datos de compuestos conocidos (proteínas diana y fármacos), y se aprovecha después el método para incrementar la precisión de las predicciones de afinidad del método de CV BINDSURF.
Resumo:
The intersection of Artificial Intelligence and The Law stands for a multifaceted matter, and its effects set the advances on culture, organization, as well as the social matters, when the emergent information technologies are taken into consideration. From this point of view, the weight of formal and informal Conflict Resolution settings should be highlighted, and the use of defective data, information or knowledge must be emphasized. Indeed, it is hard to do it with traditional problem solving methodologies. Therefore, in this work the focus is on the development of decision support systems, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks. It is intended to evaluate the Quality-of-Judgments and the respective Degree-of-Confidence that one has on such happenings.
Resumo:
Acute Coronary Syndrome (ACS) is transversal to a broad and heterogeneous set of human beings, and assumed as a serious diagnosis and risk stratification problem. Although one may be faced with or had at his disposition different tools as biomarkers for the diagnosis and prognosis of ACS, they have to be previously evaluated and validated in different scenarios and patient cohorts. Besides ensuring that a diagnosis is correct, attention should also be directed to ensure that therapies are either correctly or safely applied. Indeed, this work will focus on the development of a diagnosis decision support system in terms of its knowledge representation and reasoning mechanisms, given here in terms of a formal framework based on Logic Programming, complemented with a problem solving methodology to computing anchored on Artificial Neural Networks. On the one hand it caters for the evaluation of ACS predisposing risk and the respective Degree-of-Confidence that one has on such a happening. On the other hand it may be seen as a major development on the Multi-Value Logics to understand things and ones behavior. Undeniably, the proposed model allows for an improvement of the diagnosis process, classifying properly the patients that presented the pathology (sensitivity ranging from 89.7% to 90.9%) as well as classifying the absence of ACS (specificity ranging from 88.4% to 90.2%).
Resumo:
This paper presents the study and experimental tests for the viability analysis of using multiple wireless technologies in urban traffic light controllers in a Smart City environment. Communication drivers, different types of antennas, data acquisition methods and data processing for monitoring the network are presented. The sensors and actuators modules are connected in a local area network through two distinct low power wireless networks using both 868 MHz and 2.4 GHz frequency bands. All data communications using 868 MHz go through a Moteino. Various tests are made to assess the most advantageous features of each communication type. The experimental results show better range for 868 MHz solutions, whereas the 2.4 GHz presents the advantage of self-regenerating the network and mesh. The different pros and cons of both communication methods are presented.
Resumo:
The AntiPhospholipid Syndrome (APS) is an acquired autoimmune disorder induced by high levels of antiphospholipid antibodies that cause arterial and veins thrombosis, as well as pregnancy-related complications and morbidity, as clinical manifestations. This autoimmune hypercoagulable state, usually known as Hughes syndrome, has severe consequences for the patients, being one of the main causes of thrombotic disorders and death. Therefore, it is required to be preventive; being aware of how probable is to have that kind of syndrome. Despite the updated of antiphospholipid syndrome classification, the diagnosis remains difficult to establish. Additional research on clinically relevant antibodies and standardization of their quantification are required in order to improve the antiphospholipid syndrome risk assessment. Thus, this work will focus on the development of a diagnosis decision support system in terms of a formal agenda built on a Logic Programming approach to knowledge representation and reasoning, complemented with a computational framework based on Artificial Neural Networks. The proposed model allows for improving the diagnosis, classifying properly the patients that really presented this pathology (sensitivity higher than 85%), as well as classifying the absence of APS (specificity close to 95%).