980 resultados para optical parametric-amplifier
Resumo:
Objectives. To evaluate the influence of different tertiary amines on degree of conversion (DC), shrinkage-strain, shrinkage-strain rate, Knoop microhardness, and color and transmittance stabilities of experimental resins containing BisGMA/TEGDMA (3: 1 wt), 0.25wt% camphorquinone, 1wt% amine (DMAEMA, CEMA, DMPT, DEPT or DABE). Different light-curing protocols were also evaluated. Methods. DC was evaluated with FTIR-ATR and shrinkage-strain with the bonded-disk method. Shrinkage-strain-rate data were obtained from numerical differentiation of shrinkage-strain data with respect to time. Color stability and transmittance were evaluated after different periods of artificial aging, according to ISO 7491: 2000. Results were evaluated with ANOVA, Tukey, and Dunnett`s T3 tests (alpha = 0.05). Results. Studied properties were influenced by amines. DC and shrinkage-strain were maximum at the sequence: CQ < DEPT < DMPT <= CEMA approximate to DABE < DMAEMA. Both DC and shrinkage were also influenced by the curing protocol, with positive correlations between DC and shrinkage-strain and DC and shrinkage-strain rate. Materials generally decreased in L* and increased in b*. The strong exception was the resin containing DMAEMA that did not show dark and yellow shifts. Color varied in the sequence: DMAEMA < DEPT < DMPT < CEMA < DABE. Transmittance varied in the sequence: DEPT approximate to DABE < DABE approximate to DMPT approximate to CEMA < DMPT approximate to CEMA approximate to DMAEMA, being more evident at the wavelength of 400 nm. No correlations between DC and optical properties were observed. Significance. The resin containing DMAEMA showed higher DC, shrinkage-strain, shrinkage-strain rate, and microhardness, in addition to better optical properties. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Spontaneous and tone-evoked changes in light reflectance were recorded from primary auditory cortex (A1) of anesthetized cats (barbiturate induction, ketamine maintenance). Spontaneous 0.1-Hz oscillations of reflectance of 540- and 690-nm light were recorded in quiet. Stimulation with tone pips evoked localized reflectance decreases at 540 nm in 3/10 cats. The distribution of patches activated by tones of different frequencies reflected the known tonotopic organization of auditory cortex. Stimulus-evoked reflectance changes at 690 nm were observed in 9/10 cats but lacked stimulus-dependent topography. In two experiments, stimulus-evoked optical signals at 540 nm were compared with multiunit responses to the same stimuli recorded at multiple sites. A significant correlation (P < 0.05) between magnitude of reflectance decrease and multiunit response strength was evident in only one of five stimulus conditions in each experiment. There was no significant correlation when data were pooled across all stimulus conditions in either experiment. In one experiment, the spatial distribution of activated patches, evident in records of spontaneous activity at 540 nm, was similar to that of patches activated by tonal stimuli. These results suggest that local cerebral blood volume changes reflect the gross tonotopic organization of A1 but are not restricted to the sites of spiking neurons.
Resumo:
Rapid access to genetic information is central to the revolution presently occurring in the pharmaceutical industry, particularly In relation to novel drug target identification and drug development. Genetic variation, gene expression, gene function and gene structure are just some of the important research areas requiring efficient methods of DNA screening. Here, we highlight state-of-the-art techniques and devices for gene screening that promise cheaper and higher-throughput yields than currently achieved with DNA microarrays. We include an overview of existing and proposed bead-based strategies designed to dramatically increase the number of probes that can be interrogated in one assay. We focus, in particular, on the issue of encoding and/or decoding (bar-coding) large bead-based libraries for HTS.
Resumo:
When visual information is confined to one object plane, the emmetropization end-point is adjusted in accord with the corresponding incident optical vergence at the eye [Proceedings of the 7th International Conference on Myopia (2000) 113]. We now report the effect of adding extra visual information beyond the target plane. Visual conditions were controlled using a cone-lens system: black Maltese cross targets on white opaque backgrounds (OMX) were attached to the open faces of 2.5 cm translucent cones fitted with either 0, +25 or +40 D imaging lenses. An alternative target (TMX) was made by substituting the opaque target background for a transparent background, which allowed access to visual information beyond the target plane. The imaging devices were applied to 7-day-old chicks and worn for 4 days. Prior to this treatment, on day 2, some chicks underwent ciliary nerve section (CNS) to preclude accommodation. All treatments were monocular. Refractive errors and axial ocular dimensions were measured using retinoscopy and A-scan ultrasonography under halothane anesthesia. Treatment effects were specified as mean ( +/-S.D.) interocular differences. Eyes with the OMX/ + 40 D lens combination remained emmetropic ( +0.73 +/-3.57 D), consistent with the target plane being approximately conjugate with the retina. Switching to the TMX caused a hyperopic shift in refractive error ( + 3.78 +/- 3.41 D). This relative shift towards hyperopia in switching from the OMX to the TMX target also occurred for the other two lens powers. Thus, the OMX/ + 25 D lens induced myopia ( - 7.00 +/-5.88 D), corresponding to the imposed hyperopic defocus (target plane now imaged behind the retina), and switching to the TMX resulted in a reduction in myopia (-1.73 +/-5.36 D), The OMX/0 D lens combination produced the largest myopic shift, and here, switching to the TMX condition almost eliminated the myopic response (-15.50 +/-6.62 D cf. -0.56 +/-1.24 D). This relative hyperopic shift associated with switching from the OMX to the TMX target was eliminated by CNS surgery. Thus, the two CNS/TMX groups were both more myopic than the equivalent no CNS/TMX groups ( + 40 D lens: -2.66 +/-2.34 D; +25 D lens: -7.97 +/-6.87 D). When the visual information is restricted to one plane, incident optical vergence appears to direct emmetropization. Adding Visual information at other distances produces a shift in the end-point of ernmetropization in the direction of the added information. That these effects are dependent on the integrity of the accommodation system implies that accommodation plays a role in emmetropization and represents the first reported evidence of this kind. Published by Elsevier Science Ltd.
Resumo:
This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of quantum electromagnetic field modes, with particular relevance to atoms interacting with the field in high-Q cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete quasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes.
Resumo:
Non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, such as in high Q cavities, is treated using a quasimode description, and the pseudo mode theory for single quantum reservoir excitations is obtained via Fano diagonalisation. The atomic transitions are coupled to a discrete set of (cavity) quasimodes, which are also coupled to a continuum set of (external) quasimodes with slowly varying coupling constants. Each pseudomode corresponds to a cavity quasimode, and the original reservoir structure is obtained in expressions for the equivalent atom-true mode coupling constants. Cases of multiple excitation of the reservoir are now treatable via Markovian master equations for the atom-discrete quasimode system.
Resumo:
We discuss the connection between quantum interference effects in optical beams and radiation fields emitted from atomic systems. We illustrate this connection by a study of the first- and second-order correlation functions of optical fields and atomic dipole moments. We explore the role of correlations between the emitting systems and present examples of practical methods to implement two systems with non-orthogonal dipole moments. We also derive general conditions for quantum interference in a two-atom system and for a control of spontaneous emission. The relation between population trapping and dark states is also discussed. Moreover, we present quantum dressed-atom models of cancellation of spontaneous emission, amplification on dark transitions, fluorescence quenching and coherent population trapping.
Resumo:
This paper deals with atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in photonic band gap materials. The case of high Q cavities has been treated elsewhere using Fano diagonalization based on a quasimode approach, showing that the cavity quasimodes are responsible for pseudomodes introduced to treat non-Markovian behaviour. The paper considers a simple model of a photonic band gap case, where the spatially dependent permittivity consists of a constant term plus a small spatially periodic term that leads to a narrow band gap in the spectrum of mode frequencies. Most treatments of photonic band gap materials are based on the true modes, obtained numerically by solving the Helmholtz equation for the actual spatially periodic permittivity. Here the field modes are first treated in terms of a simpler quasimode approach, in which the quasimodes are plane waves associated with the constant permittivity term. Couplings between the quasimodes occur owing to the small periodic term in the permittivity, with selection rules for the coupled modes being related to the reciprocal lattice vectors. This produces a field Hamiltonian in quasimode form. A matrix diagonalization method may be applied to relate true mode annihilation operators to those for quasimodes. The atomic transitions are coupled to all the quasimodes, and the true mode atom-EM field coupling constants (one-photon Rabi frequencies) are related to those for the quasimodes and also expressions are obtained for the true mode density. The results for the one-photon Rabi frequencies differ from those assumed in other work. Expressions for atomic decay rates are obtained using the Fermi Golden rule, although these are valid only well away from the band gaps.
Resumo:
Applying programming techniques to detailed data for 406 rice farms in 21 villages, for 1997, produces inefficiency measures, which differ substantially from the results of simple yield and unit cost measures. For the Boro (dry) season, mean technical efficiency was efficiency was 56.2 per cent and 69.4 per cent, allocative efficiency was 81.3 per cent, cost efficiency was 56.2 per cent and scale efficiency 94.9 per cent. The Aman (wet) season results are similar, but a few points lower. Allocative inefficiency is due to overuse of labour, suggesting population pressure, and of fertiliser, where recommended rates may warrant revision. Second-stage regressions show that large families are more inefficient, whereas farmers with better access to input markets, and those who do less off-farm work, tend to be more efficient. The information on the sources of inter-farm performance differentials could be used by the extension agents to help inefficient farmers. There is little excuse for such sub-optimal use of survey data, which are often collected at substantial costs.
Resumo:
In this paper we investigate the quantum optics of a double-ended optical cavity. We show that an impedance matched, far-detuned cavity can be used to separate the positive and negative sidebands of a field. The 'missing' sideband will be replaced by the equivalent sideband incident on the cavity from the other direction. This technique can be used to convert the quantum correlations between the sidebands of the incident fields into quantum correlations between the two spatially distinct output fields. We show that, under certain experimental conditions, the fields emerging from the cavity will display entanglement.
Resumo:
The enormous amount of information generated through sequencing of the human genome has increased demands for more economical and flexible alternatives in genomics, proteomics and drug discovery. Many companies and institutions have recognised the potential of increasing the size and complexity of chemical libraries by producing large chemical libraries on colloidal support beads. Since colloid-based compounds in a suspension are randomly located, an encoding system such as optical barcoding is required to permit rapid elucidation of the compound structures. We describe in this article innovative methods for optical barcoding of colloids for use as support beads in both combinatorial and non-combinatorial libraries. We focus in particular on the difficult problem of barcoding extremely large libraries, which if solved, will transform the manner in which genomics, proteomics and drug discovery research is currently performed.
Resumo:
We investigate the design of free-space optical interconnects (FSOIs) based on arrays of vertical-cavity surface-emitting lasers (VCSELs), microlenses, and photodetectors. We explain the effect of the modal structure of a multimodeVCSEL beam on the performance of a FSOI with microchannel architecture. A Gaussian-beam diffraction model is used in combination with the experimentally obtained spectrally resolved VCSEL beam profiles to determine the optical channel crosstalk and the signal-to-noise ratio (SNR) in the system. The dependence of the SNR on the feature parameters of a FSOI is investigated. We found that the presence of higher-order modes reduces the SNR and the maximum feasible interconnect distance. We also found that the positioning of a VCSEL array relative to the transmitter microlens has a significant impact on the SNR and the maximum feasible interconnect distance. Our analysis shows that the departure from the traditional confocal system yields several advantages including the extended interconnect distance and/or improved SNR. The results show that FSOIs based on multimode VCSELs can be efficiently utilized in both chip-level and board-level interconnects. (C) 2002 Optical Society of America.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Free-space optical interconnects (FSOIs), made up of dense arrays of vertical-cavity surface-emitting lasers, photodetectors and microlenses can be used for implementing high-speed and high-density communication links, and hence replace the inferior electrical interconnects. A major concern in the design of FSOIs is minimization of the optical channel cross talk arising from laser beam diffraction. In this article we introduce modifications to the mode expansion method of Tanaka et al. [IEEE Trans. Microwave Theory Tech. MTT-20, 749 (1972)] to make it an efficient tool for modelling and design of FSOIs in the presence of diffraction. We demonstrate that our modified mode expansion method has accuracy similar to the exact solution of the Huygens-Kirchhoff diffraction integral in cases of both weak and strong beam clipping, and that it is much more accurate than the existing approximations. The strength of the method is twofold: first, it is applicable in the region of pronounced diffraction (strong beam clipping) where all other approximations fail and, second, unlike the exact-solution method, it can be efficiently used for modelling diffraction on multiple apertures. These features make the mode expansion method useful for design and optimization of free-space architectures containing multiple optical elements inclusive of optical interconnects and optical clock distribution systems. (C) 2003 Optical Society of America.