1000 resultados para optical differentiation
Resumo:
A novel SYBR® green-real time polymerase chain reaction (qPCR) was developed to detect two Bartonellaspecies, B. henselae and B. clarridgeiae, directly from blood samples. The test was used in blood samples obtained from cats living in animal shelters in Southern Brazil. Results were compared with those obtained by conventional PCR targeting Bartonella spp. Among the 47 samples analyzed, eight were positive using the conventional PCR and 12 were positive using qPCR. Importantly, the new qPCR detected the presence of both B. henselae and B. clarridgeiae in two samples. The results show that the qPCR described here may be a reliable tool for the screening and differentiation of two important Bartonella species.
Resumo:
New methodologies were developed for the identification of Nocardia but the initial diagnosis still requires a fast and accurate method, mainly due to the similarity to Mycobacterium, both clinical and bacteriologically. Growth on Löwenstein-Jensen (LJ) medium, presence of acid-fast bacilli through Ziehl-Neelsen staining, and colony morphology can be confusing aspects between Nocardia and Mycobacterium. This study describes the occurrence of Nocardia spp. in a mycobacterial-reference laboratory, observing the main difficulties in differentiating Nocardia spp. from Mycobacterium spp., and correlating isolates with nocardiosis cases. Laboratory records for the period between 2008 and 2012 were analyzed, and the isolates identified as Nocardia sp. or as non-acid-fast filamentous bacilli were selected. Epidemiological and bacteriological data were analyzed as well. Thirty-three isolates identified as Nocardia sp. and 22 as non-acid-fast bacilli were selected for this study, and represented 0.12% of isolates during the study period. The presumptive identification was based on macroscopic and microscopic morphology, resistance to lysozyme and restriction profiles using the PRA-hsp65 method. Nocardia spp. can grow on media for mycobacteria isolation (LJ and BBL MGIT™) and microscopy and colony morphology are very similar to some mycobacteria species. Seventeen patients (54.8%) were reported and treated for tuberculosis, but presented signs and symptoms of nocardiosis. It was concluded that the occurrence of Nocardia sp. during the study period was 0.12%. Isolates with characteristics of filamentous bacilli, forming aerial hyphae, with colonies that may be pigmented, rough and without the BstEII digestion pattern in PRA-hsp65 method are suggestive of Nocardia spp. For a mycobacterial routine laboratory, a flow for the presumptive identification of Nocardia is essential, allowing the use of more accurate techniques for the correct identification, proper treatment and better quality of life for patients.
Resumo:
Optical immersion clearing is a technique that has been widely studied for more than two decades and that is used to originate a temporary transparency effect in biological tissues. If applied in cooperation with clinical methods it provides optimization of diagnosis and treatment procedures. This technique turns biological tissues more transparent through two main mechanisms — tissue dehydration and refractive index (RI) matching between tissue components. Such matching is obtained by partial replacement of interstitial water by a biocompatible agent that presents higher RI and it can be completely reversible by natural rehydration in vivo or by assisted rehydration in ex vivo tissues. Experimental data to characterize and discriminate between the two mechanisms and to find new ones are necessary. Using a simple method, based on collimated transmittance and thickness measurements made from muscle samples under treatment, we have estimated the diffusion properties of glucose, ethylene glycol (EG) and water that were used to perform such characterization and discrimination. Comparing these properties with data from literature that characterize their diffusion in water we have observed that muscle cell membrane permeability limits agent and water diffusion in the muscle. The same experimental data has allowed to calculate the optical clearing (OC) efficiency and make an interpretation of the internal changes that occurred in muscle during the treatments. The same methodology can now be used to perform similar studies with other agents and in other tissues in order to solve engineering problems at design of inexpensive and robust technologies for a considerable improvement of optical tomographic techniques with better contrast and in-depth imaging.
Resumo:
Multifocal intraocular lenses (MF IOLs) have concentric optical zones with different dioptric power, enabling patients to have good visual acuity at multiple focal points. However, several optical limitations have been attributed to this particular design. The purpose of this study is to access the effect of MF IOLs design on the accuracy of retinal optical coherence tomography (OCT). Cross-sectional study conducted at the Refractive Surgery Department of Central Lisbon Hospital Center. Twenty-three eyes of 15 patients with a diffractive MF IOL and 27 eyes of 15 patients with an aspheric monofocal IOL were included in this study. All patients underwent OCT macular scans using Heidelberg Spectralis®. Macular thickness and volume values and image quality (Q factor) were compared between the two groups. There were no statistically significant differences between both groups regarding macular thickness or volume measurements. Retinal OCT image quality was significantly lower in the MF IOL group (p < 0.01). MF IOLs are associated with a significant decrease in OCT image quality. However, this fact does not seem to compromise the accuracy of spectral domain OCT retinal measurements.
Resumo:
Coronary optical coherence tomography has emerged as the most powerful in-vivo imaging modality to evaluate vessel structure in detail. It is a useful research tool that provides insights into the pathogenesis of coronary artery disease. This technology has an important clinical role that is still being developed. We review the evidence on the wide spectrum of potential clinical applications for coronary optical coherence tomography, which encompass the successive stages in coronary artery disease management: accurate lesion characterization and quantification of stenosis, guidance for the decision to perform percutaneous coronary intervention and subsequent planning, and evaluation of immediate and long-term results following intervention.
Resumo:
The effects of temperature, pH, osmolarity and aeration on the growth and differentiation of a trypanosome ofthe subgenus Schizotrypanum isolatedfrom the bat Phyllostomus hastatus were studied. In general, the growth characteristics ofthe flagellate were similar to those of Trypanosoma (Schizotrypanum) cruzi. However, the parasite did not growth at 33 or 37C. Increase in the osmolarity and aeration promoted growth at 33C. Significant metacyclogenesis was detected only in the growth condition where maximal growth occured (28C, pH 7.3, 380m0s/kg, in tissue cullure flasks), at the end ofthe exponential growth phase. The begining of the metacyclogenesis process was coincident with most glucose utilization and lowest pH. During metacyclogenesis both culture medium pH and osmolarity increased steadly.
Resumo:
Immunological tolerance, that is, the failure to mount an immune response to an otherwise immunogenic molecule, is one of the fundamental questions in immunology. The fact that lymphocytes express antigen receptors that are generated randomly and have the potential to recognize any conceivable antigen, adds another puzzle to the physiology of immunological tolerance. The other side of the coin, the general absence of immune responses to self antigens, is ensured by a tight regulation and several selection steps during T and B cell differentiation. One of these processes is the differentiation of regulatory T cells (Treg). While developing in the thymus, T cell clones bearing receptors with high affinity/avidity to antigens present at the time of differentiation may be eliminated by apoptosis or, alternatively, express Foxp3 and become Treg. Treg are key players in the regulation of immunological tolerance since humans and mice with complete loss of function variants of this gene develop fatal autoimmune conditions early in life.(...)
Resumo:
Doctorate in Biology, Specialty in Biotechnology
Resumo:
Fundação para a Ciência e a Tecnologia - SFRH/BD/42848/2008, através do Programa MIT_Portugal em Sistemas de Bioengenharia; projectos PTDC/SAUNEU/104415/2008 e Projecto ref. 96542 da Fundação Caloust Gulbenkian
Resumo:
Genetic diversity and differentiation, inferred by typing the polymorphic genes coding for the merozoite surface proteins 1 (Msp-1) and 2 (Msp-2), were compared for 345 isolates belonging to seven Plasmodium falciparum populations from three continents. Both loci yielded similar estimates of genetic diversity for each population, but rather different patterns of between-population differentiation, suggesting that natural selection on these loci, rather than the transmission dynamics of P. falciparum, determines the variation in allele frequencies among populations.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology.
Resumo:
Dissertação para a obtenção do grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Thirteen strains of the genus Candida were isolated from catheter, urine and surgical wounds from individual patients of the Santa Casa de Misericórdia, Belo Horizonte, MG, Brazil. Ten strains were characterized as Candida albicans, two as Candida glabrata, and one as Candida parapsilosis. Isolates were evaluated for molecular relatedness by random amplified polymorphic DNA technique using 15 primers. The analysis of the genomic DNA obtained revealed a low intraspecific polymorphism and did not allow for the differentiation between strains of the same species obtained from distinct clinical sources (catheter, urine and surgical wounds). The RAPD profiles generated were able to differentiate among the species of Candida albicans, Candida parapsilosis and Candida glabrata strains isolated in this study.
Resumo:
Clostridium difficile is a gram positive, spore former, anaerobic bacterium that is able to cause infection and disease, with symptoms ranging from mild diarrhea to pseudomembranous colitis, toxic megacolon, sepsis and death. In the last decade new strains have emerged that caused outbreaks of increased disease severity and higher recurrence, morbidity and mortality rates, and C. difficile is now considered both a main nosocomial pathogen associated with antibiotic therapy as well as a major concern in the community.(...)
Resumo:
Thirty-four Candida isolates were analyzed by random amplified polymorphic DNA using the primer OPG-10:24 Candida albicans; 4 Candida tropicalis; 2 Candida parapsilosis; 2 Candida dubliniensis; 1 Candida glabrata and 1 Candida krusei. The UPGMA-Pearson correlation coefficient was used to calculate the genetic distance between the different Candida groupings. Samples were classified as identical (correlation of 100%); highly related samples (90%); moderately related samples (80%) and unrelated samples (< 70%). The results showed that the RAPD proposed was capable of classifying the isolates coherently (such that same species were in the same dendrogram), except for two isolates of Candida parapsilosis and the positive control (Netherlands, 1973), probably because they are now recognized as three different species. Concerning the only fluconazole-resistant Candida tropicalis isolate with a genotype that was different to the others, the data were insufficient to affirm that the only difference was the sensitivity to fluconazole. We concluded that the Random Amplified Polymorphic DNA proposed might be used to confirm Candida species identified by microbiological methods.