961 resultados para nuclear C*-algebras
Resumo:
Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.
Resumo:
Dyslipidemia accelerates vascular complications of diabetes. Nuclear magnetic resonance (NMR) analysis of lipoprotein subclasses is used to evaluate a mouse model of human familial hypercholesterolemia +/- streptozotocin (STZ)-induced diabetes. A double knockout (DKO) mouse (low-density lipoprotein receptor [LDLr] -/-; apolipoprotein B [apoB] mRNA editing catalytic polypeptide-1 [Apobec1] -/-) was studied. Wild-type (WT) and DKO mice received sham or STZ injections at age 7 weeks, yielding control (WT-C, DKO-C) and diabetic (WT-D, DKO-D) groups. Fasting serum was collected when the mice were killed (age 40 weeks) for Cholestech analysis (Cholestech Corp, Hayward, CA) and NMR lipoprotein subclass profile. By Cholestech, fasting triglyceride and total cholesterol increased in DKO-C versus WT-C. Diabetes further increased total cholesterol in DKO. High-density lipoprotein cholesterol (HDL-C) was similar among all groups. NMR revealed that LDL in all groups was present in a subclass the size of large human LDL and was increased 48-fold in DKO-C versus WT-C animals, but was unaffected by diabetes. HDL was found in a subclass equivalent to large human HDL, and was similar among groups. In conclusion, NMR analysis reveals lipoprotein subclass distributions and the effects of genetic modification and diabetes in mice, but lack of particles the size of human small LDL and small HDL may limit the relevance of the present animal model to human disease.
Resumo:
Epithelia play important immunological roles at a variety of mucosal sites. We examined NFkappaB activity in control and TNF-alpha treated bovine mammary epithelial monolayers (BME-UV cells). A region of the bovine IL-8 (bIL-8) promoter was sequenced and a putative kappaB consensus sequence was identified bioinformatically. We used this sequence to analyse nuclear extracts for IL-8 specific NFkappaB activity. As a surrogate marker of NFkappaB activation, we investigated IL-8 release in two models. Firstly in BME-UV monolayers, IL-8 release in the presence of pro- and anti-inflammatory agents was determined by enzyme-linked immunosorbent assay (ELISA). Secondly, we measured IL-8 secretion from a novel model of intact mucosal sheets of bovine teat sinus. IL-8 release into bathing solutions was assessed following treatment with pro- and anti-inflammatory agents. TNF-alpha enhanced NFkappaB activity in bovine mammary epithelial monolayers. p65 NFkappaB homodimer was identified in both control and TNF-alpha treated cells. Novel sequencing of the bovine IL-8 promoter identified a putative kappaB consensus sequence, which specifically bound TNF-alpha inducible p50/p65 heterodimer. TNF-alpha induced primarily serosal IL-8 release in the cell culture model. Pre-treatment with anti-TNF or dexamethasone inhibited TNF-alpha induced IL-8 release. High dose interleukin-1beta (IL-1beta) induced IL-8 release, however significantly less potently than TNF-alpha. Bovine mammary mucosal tissue released high basal levels of IL-8 which were unaffected by TNF-alpha or IL-1beta but inhibited by both dexamethasone and anti-TNF. These data support a role for TNF-alpha in activation of NFkappaB and release of IL-8 from bovine mammary epithelial cells.
Resumo:
Objective: Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process.
Approach and Results: We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α–mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation.
Conclusions: Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α–mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
Resumo:
Patulin (PAT) is a mycotoxin produced by various species of fungi, with Penicillium expansum being the most commonly occurring. Apples and apple products are the main sources of PAT contamination. This mycotoxin has been shown to induce toxic effects in animals, a few of which include reproductive toxicity and interference with the endocrine system. Here the endocrine disrupting potential of PAT has been investigated in vitro to identify disruption at the level of oestrogen, androgen, progestagen and glucocorticoid nuclear receptor transcriptional activity, and to assess interferences in estradiol, testosterone and progesterone steroid hormone production. At the receptor level, 0.5-5000ng/ml (0.0032-32μM) PAT did not appear to induce any specific (ant) agonistic responses in reporter gene assays (RGAs); however, nuclear transcriptional activity was affected. A >6 fold increase in the glucocorticoid receptor transcriptional activity was observed following treatment with 5000ng/ml PAT in the presence of cortisol. At the hormone production level, despite cytotoxicity being observed after treatment with 5000ng/ml PAT, estradiol levels had increased >2 fold. At 500ng/ml PAT treatment, an increase in progesterone and a decrease in testosterone production were observed. The findings of this study could be considered in assessing the health risks following exposure to PAT.
Resumo:
Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities
Resumo:
We undertake a detailed study of the sets of multiplicity in a second countable locally compact group G and their operator versions. We establish a symbolic calculus for normal completely bounded maps from the space B(L-2(G)) of bounded linear operators on L-2 (G) into the von Neumann algebra VN(G) of G and use it to show that a closed subset E subset of G is a set of multiplicity if and only if the set E* = {(s,t) is an element of G x G : ts(-1) is an element of E} is a set of operator multiplicity. Analogous results are established for M-1-sets and M-0-sets. We show that the property of being a set of multiplicity is preserved under various operations, including taking direct products, and establish an Inverse Image Theorem for such sets. We characterise the sets of finite width that are also sets of operator multiplicity, and show that every compact operator supported on a set of finite width can be approximated by sums of rank one operators supported on the same set. We show that, if G satisfies a mild approximation condition, pointwise multiplication by a given measurable function psi : G -> C defines a closable multiplier on the reduced C*-algebra G(r)*(G) of G if and only if Schur multiplication by the function N(psi): G x G -> C, given by N(psi)(s, t) = psi(ts(-1)), is a closable operator when viewed as a densely defined linear map on the space of compact operators on L-2(G). Similar results are obtained for multipliers on VN(C).
Resumo:
The present study reports the effect a cell permeabilizer, polyethylenimine (PEI) has on the photodynamic effect of methylene blue (MB) and nuclear fast red (NFR) in the presence of hydrogen peroxide (H2O2). The photosensitized destruction of the algae Chlorella vulgaris under irradiation with visible light is examined. The photodynamic effect was investigated under aerobic and anaerobic conditions. The presence of a permeabilizer during the photosensitized destruction of C. vulgaris does not enhance the activity of the MB, MB/H2O2 system or the NFR, NFR/H2O 2 system under aerobic conditions. However under anaerobic conditions we have determined that when a cell permeabilizer was added to the MB/H 2O2 system, the photosensitized destruction of C. vulgaris proceeded via a combination of Type I and Type II mechanisms. The presence of PEI enforces MB/H2O2 to be active toward the destruction of C. vulgaris whether oxygen is present or absent. Under aerobic and anaerobic conditions the activity of NFR was suppressed in the presence of PEI as a result of electrostatic interactions between the photosensitizer and the cell permeabilizer. The decrease in fluorescence recorded is indicative of destruction of the chlorophyll a pigment.
Resumo:
A considerable number of investigations have started to elucidate the essential roles biological agents play in the biodeterioration of stone. Chemical biocides are becoming increasingly banned because of the environmental and health hazards associated with these toxic substances. The present study reports the photodynamic effect of Methylene Blue (MB) and Nuclear Fast Red (NFR) in the presence of hydrogen peroxide (H2O2) on the destruction of the algae Chlorella vulgaris (C. vulgaris) under irradiation with visible light. Illumination of C. vulgaris in the presence of MB or NFR combined with H2O2 results in the decomposition of both the algal species and the photosensitizer. The photodynamic effect was investigated under aerobic and anaerobic conditions. Differences in mechanism type are reported and are dependent on both the presence and the absence of oxygen. The behavior of each photosensitizer leads to a Type II mechanism and a Type I/Type II combination for MB and NFR, respectively, being concluded. This novel combination could be effective for the remediation of biofilm-colonized stone surfaces.
Resumo:
Klebsiella pneumoniae is etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group have shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-on-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening, that of metabolism and transport (32% of the mutants), and of enveloperelated genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression which in turn underlined the NF- κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS Opolysaccharide and T2SS mutants-induced responses were dependent on TLR2-TLR4- MyD88 activation suggested that LPS Opolysaccharide and PulA perturbed TLRdependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS Opolysaccharide and PulA T2SS could be new targets for designing new antimicrobials. Increasing TLR-governed defence responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.
Resumo:
The pathways of biotransformation of 4-fluorobiphenyl (4FBP) by the ectomycorrhizal fungus Tylospora fibrilosa and several other mycorrhizal fungi were investigated by using 19F nuclear magnetic resonance (NMR) spectroscopy in combination with 14C radioisotope-detected high-performance liquid chromatography (14C- HPLC). Under the conditions used in this study T. fibrillosa and some other species degraded 4FBP. 14C-HPLC profiles indicated that there were four major biotransformation products, whereas 19F NMR showed that there were six major fluorine-containing products. We confirmed that 4-fluorobiphen-4'-ol and 4-fluorobiphen-3'-ol were two of the major products formed, but no other products were conclusively identified. There was no evidence for the expected biotransformation pathway (namely, meta cleavage of the less halogenated ring), as none of the expected products of this route were found. To the best of our knowledge, this is the first report describing intermediates formed during mycorrhizal degradation of halogenated biphenyls.
Resumo:
Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.
Resumo:
LYRIC/AEG-1 and its altered expression have been linked to carcinogenesis in prostate, brain and melanoma as well as promoting chemoresistance and metastasis in breast cancer. LYRIC/AEG-1 function remains unclear, although LYRIC/AEG-1 is activated by oncogenic HA-RAS, through binding of c-myc to its promoter, which in turn regulates the key components of the PI3-kinase and nuclear factor-kappaB pathways. We have identified the transcriptional repressor PLZF as an interacting protein of LYRIC/AEG through a yeast two-hybrid screen. PLZF regulates the expression of genes involved in cell growth and apoptosis including c-myc. Coexpression of LYRIC/AEG-1 with PLZF leads to a reduction in PLZF-mediated repression by reducing PLZF binding to promoters. We have confirmed that nuclear LYRIC/AEG-1 and PLZF interact in mammalian cells via the N- and C termini of LYRIC/AEG-1 and a region C terminal to the RD2 domain of PLZF. Both proteins colocalize to nuclear bodies containing histone deacetylases, which are known to promote PLZF-mediated repression. Our data suggest one mechanism for cells with altered LYRIC/AEG-1 expression to evade apoptosis and increase cell growth during tumourigenesis through the regulation of PLZF repression.
Resumo:
PURPOSE: LYRIC/AEG-1 has been reported to influence breast cancer survival and metastases, and its altered expression has been found in a number of cancers. The cellular function of LYRIC/AEG-1 has previously been related to its subcellular distribution in cell lines. LYRIC/AEG-1 contains three uncharacterized nuclear localization signals (NLS), which may regulate its distribution and, ultimately, function in cells.
EXPERIMENTAL DESIGN: Immunohistochemistry of a human prostate tissue microarray composed of 179 prostate cancer and 24 benign samples was used to assess LYRIC/AEG-1 distribution. Green fluorescent protein-NLS fusion proteins and deletion constructs were used to show the ability of LYRIC/AEG-1 NLS to target green fluorescent protein from the cytoplasm to the nucleus. Immunoprecipitation and Western blotting were used to show posttranslational modification of LYRIC/AEG-1 NLS regions.
RESULTS: Using a prostate tissue microarray, significant changes in the distribution of LYRIC/AEG-1 were observed in prostate cancer as an increased cytoplasmic distribution in tumors compared with benign tissue. These differences were most marked in high grade and aggressive prostate cancers and were associated with decreased survival. The COOH-terminal extended NLS-3 (amino acids 546-582) is the predominant regulator of nuclear localization, whereas extended NLS-1 (amino acids 78-130) regulates its nucleolar localization. Within the extended NLS-2 region (amino acids 415-486), LYRIC/AEG-1 can be modified by ubiquitin almost exclusively within the cytoplasm.
CONCLUSIONS: Changes in LYRIC/AEG-1 subcellular distribution can predict Gleason grade and survival. Two lysine-rich regions (NLS-1 and NLS-3) can target LYRIC/AEG-1 to subcellular compartments whereas NLS-2 is modified by ubiquitin in the cytoplasm.
Resumo:
Ligand-dependent nuclear import is crucial for the function of the androgen receptor (AR) in both health and disease. The unliganded AR is retained in the cytoplasm but, on binding 5alpha-dihydrotestosterone, it translocates into the nucleus and alters transcription of its target genes. Nuclear import of AR is mediated by the nuclear import factor importin-alpha, which functions as a receptor that recognises and binds to specific nuclear localisation signal (NLS) motifs on cargo proteins. We show here that the AR binds to importin-alpha directly, albeit more weakly than the NLS of SV40 or nucleoplasmin. We describe the 2.6-angstroms-resolution crystal structure of the importin-alpha-AR-NLS complex, and show that the AR binds to the major NLS-binding site on importin-alpha in a manner different from most other NLSs. Finally, we have shown that pathological mutations within the NLS of AR that are associated with prostate cancer and androgen-insensitivity syndrome reduce the binding affinity to importin-alpha and, subsequently, retard nuclear import; surprisingly, however, the transcriptional activity of these mutants varies widely. Thus, in addition to its function in the nuclear import of AR, the NLS in the hinge region of AR has a separate, quite distinct role on transactivation, which becomes apparent once nuclear import has been achieved.