858 resultados para nonlinear waves propagation
Resumo:
There has been revival of interest in Jerky flow from the point of view of dynamical systems. The earliest attempt in this direction was from our group. One of the predictions of the theory is that Jerky flow could be chaotic. This has been recently verified by us. We have recently extended the earlier model to account for the spatial aspect as well. Both these models are in the form of coupled set of nonlinear differential equations and hence, they are complicated in their structure. For this reason we wish to devise a model based on the results of these two theories in the form of coupled lattice map for the description of the formation and propagation of dislocation bands. We report here one such model and its results.
Resumo:
Wave propagation in fluid?filled/submerged tubes is of interest in large HVAC ducts, and also in understanding and interpreting the experimental results obtained from fluid?filled impedance tubes. Based on the closed form analytical solution of the coupled wave equations, an eigenequation, which is the determinant of an 8×8 matrix, is derived and solved to obtain the axial wave number of the lowest?order longitudinal modes for cylindrical ducts of various diameter and wall thickness. The dispersion behavior of the wave motion is analyzed. It is observed that the larger the diameter of the duct and/or the smaller its wall thickness, the more flexible the impedance tube leading to more coupling between the waves in the elastic media. Also, it is shown that the wave motion in water?filled ducts submerged in water exhibits anomalous dispersion behavior. The axial attenuation characteristics of plane waves along water?filled tubes submerged in water or air are also investigated. Finally, investigations on the sound intensity level difference characteristics of the wall of the air?filled tubes are reported.
Resumo:
Many physical problems can be modeled by scalar, first-order, nonlinear, hyperbolic, partial differential equations (PDEs). The solutions to these PDEs often contain shock and rarefaction waves, where the solution becomes discontinuous or has a discontinuous derivative. One can encounter difficulties using traditional finite difference methods to solve these equations. In this paper, we introduce a numerical method for solving first-order scalar wave equations. The method involves solving ordinary differential equations (ODEs) to advance the solution along the characteristics and to propagate the characteristics in time. Shocks are created when characteristics cross, and the shocks are then propagated by applying analytical jump conditions. New characteristics are inserted in spreading rarefaction fans. New characteristics are also inserted when values on adjacent characteristics lie on opposite sides of an inflection point of a nonconvex flux function, Solutions along characteristics are propagated using a standard fourth-order Runge-Kutta ODE solver. Shocks waves are kept perfectly sharp. In addition, shock locations and velocities are determined without analyzing smeared profiles or taking numerical derivatives. In order to test the numerical method, we study analytically a particular class of nonlinear hyperbolic PDEs, deriving closed form solutions for certain special initial data. We also find bounded, smooth, self-similar solutions using group theoretic methods. The numerical method is validated against these analytical results. In addition, we compare the errors in our method with those using the Lax-Wendroff method for both convex and nonconvex flux functions. Finally, we apply the method to solve a PDE with a convex flux function describing the development of a thin liquid film on a horizontally rotating disk and a PDE with a nonconvex flux function, arising in a problem concerning flow in an underground reservoir.
Resumo:
The recent development of several organic materials with large nonlinear susceptibilities, high damage threshold and low melting points encouraged researchers to employ these materials in fiber form to efficiently couple diode laser pumps and obtain enhanced second harmonic generation (SHG). In this paper we report the growth of single crystal cored fibers of 4-nitro-4'-methylbenzylidene aniline, ethoxy methoxy chalcone and (-)2-((alpha) -methylbenzylamino)-5- nitropyridine by inverted Bridgman-Stockbarger technique. The fibers were grown in glass capillaries with varying internal diameters and lengths and were characterized using x-ray and polarizing microscope techniques. The propagation loss at 632.8 nm and 1300 nm were measured and SHG was studied using 1064 nm pump.
Resumo:
Utilizing the commutativity property of the Cartesian coordinate differential operators arising in the boundary conditions associated with the propagation of surface water waves against a vertical cliff, under the assumptions of linearized theory, the problem of obliquely incident surface waves is considered for solution. The case of normal incidence, handled by previous workers follow as a particular limiting case of the present problem, which exhibits a source/sink type behavior of the velocity potential at the shore-line. An independent method of attack is also presented to handle the case of normal incidence.
Resumo:
A class of I boundary value problems involving propagation of two-dimensional surface water waves, associated with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.
Resumo:
During lightning strike to a tall grounded object (TGO), reflected current waves from TGO are transmitted on to the channel. With regard to these transmitted waves, there seems to be some uncertainties like: 1) will they get reflected at the main wavefront; and 2) if so, what would be their final status. This study makes an attempt to address these issues considering a special case of strike to a TGO involving equal channel core and TGO radii. A macroscopic physical model for the lightning return stroke is adopted for the intended work. Analysis showed that the waves transmitted on to the channel merges with the main wavefront without any sign of reflection. Investigation revealed that: 1) the nonlinear spatio-temporal resistance profile of the channel at the wavefront is mainly responsible for the same; and 2) the distributed source provides additional support. The earlier findings are not limited to the special case of TGO considered. In spite of considering equal TGO and channel core radii, salient features of the model predicted remote electromagnetic fields agree well with the measured data reported in literature.
Resumo:
The analysis of propagation of a normal shock wave in CO2‐N2‐He or H2 or H2O system seeded with solid particles is presented. The variation of translational and vibrational temperatures of gas phase and the particle temperatures in the relaxation zone behind the shock front are given in graphical form. These results show that the peak value of population inversion and the width of the inversion zone are highest for He catalyst and lowest for H2O catalyst.
Resumo:
During lightning strike to a tall grounded object (TGO), reflected current waves from TGO are transmitted on to the channel. With regard to these transmitted waves, there seems to be some uncertainties like: 1) will they get reflected at the main wavefront; and 2) if so, what would be their final status. This study makes an attempt to address these issues considering a special case of strike to a TGO involving equal channel core and TGO radii. A macroscopic physical model for the lightning return stroke is adopted for the intended work. Analysis showed that the waves transmitted on to the channel merges with the main wavefront without any sign of reflection. Investigation revealed that: 1) the nonlinear spatio-temporal resistance profile of the channel at the wavefront is mainly responsible for the same; and 2) the distributed source provides additional support. The earlier findings are not limited to the special case of TGO considered. In spite of considering equal TGO and channel core radii, salient features of the model predicted remote electromagnetic fields agree well with the measured data reported in literature.
Resumo:
As an example of a front propagation, we study the propagation of a three-dimensional nonlinear wavefront into a polytropic gas in a uniform state and at rest. The successive positions and geometry of the wavefront are obtained by solving the conservation form of equations of a weakly nonlinear ray theory. The proposed set of equations forms a weakly hyperbolic system of seven conservation laws with an additional vector constraint, each of whose components is a divergence-free condition. This constraint is an involution for the system of conservation laws, and it is termed a geometric solenoidal constraint. The analysis of a Cauchy problem for the linearized system shows that when this constraint is satisfied initially, the solution does not exhibit any Jordan mode. For the numerical simulation of the conservation laws we employ a high resolution central scheme. The second order accuracy of the scheme is achieved by using MUSCL-type reconstructions and Runge-Kutta time discretizations. A constrained transport-type technique is used to enforce the geometric solenoidal constraint. The results of several numerical experiments are presented, which confirm the efficiency and robustness of the proposed numerical method and the control of the Jordan mode.
Resumo:
In the present work, the effect of longitudinal magnetic field on wave dispersion characteristics of equivalent continuum structure (ECS) of single-walled carbon nanotubes (SWCNT) embedded in elastic medium is studied. The ECS is modelled as an Euler-Bernoulli beam. The chemical bonds between a SWCNT and the elastic medium are assumed to be formed. The elastic matrix is described by Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation. The governing equations of motion for the ECS of SWCNT under a longitudinal magnetic field are derived by considering the Lorentz magnetic force obtained from Maxwell's relations within the frame work of nonlocal elasticity theory. The wave propagation analysis is performed using spectral analysis. The results obtained show that the velocity of flexural waves in SWCNTs increases with the increase of longitudinal magnetic field exerted on it in the frequency range: 0-20 THz. The present analysis also shows that the flexural wave dispersion in the ECS of SWCNT obtained by local and nonlocal elasticity theories differ. It is found that the nonlocality reduces the wave velocity irrespective of the presence of the magnetic field and does not influences it in the higher frequency region. Further it is found that the presence of elastic matrix introduces the frequency band gap in flexural wave mode. The band gap in the flexural wave is found to independent of strength of the longitudinal magnetic field. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the coupled i.e., axial, flexural, shear and contraction, wave propagation in single-walled carbon nanotubes (SWCNTs). The axial and transverse motion of SWCNT is modeled based on first order shear deformation theory (FSDT) and thickness contraction. The governing equations are derived based on nonlocal constitutive relations and the wave dispersion analysis is also carried out. The studies shows that the nonlocal scale parameter introduces certain band gap region in all wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. Explicit expressions are derived for cut-off and escape frequencies of all waves in SWCNT. It is also shown that the cut-off frequencies of shear and contraction mode are independent of the nonlocal scale parameter. The results provided in this article are new and are useful guidance for the study and design of the next generation of nanodevices that make use of the coupled wave propagation properties of single-walled carbon nanotubes.
Resumo:
In this paper we study the planetary-scale wave features using concurrent observations of mesospheric wind and temperature, ionospheric h'F, and tropospheric wind from Tirunelveli, Gadanki, and Kolhapur, all located in the Indian low latitudes, made during February 2009. Our investigations reveal that 3 to 5 day periodicity, characterized as ultrafast Kelvin (UFK) waves, was persistent throughout the atmosphere during this period. These waves show clear signatures of upward wave propagation from troposphere to the upper mesosphere, linking the ionosphere through a clear correlation between mesospheric winds and h'F variations. We also note that the amplitude of this wave decreased as we moved away from the equator. These results are the first of their kind from Indian sector, portraying the vertical as well as latitudinal characteristics of the 3 to 5 day UFK waves simultaneously from the troposphere to the ionosphere.
Resumo:
In macroscopic and even microscopic structural elements, surface effects can be neglected and classical theories are sufficient. As the structural size decreases towards the nanoscale regime, the surface-to-bulk energy ratio increases and surface effects must be taken into account. In the present work, the terahertz wave dispersion characteristics of a nanoplate are studied with consideration of the surface effects as well as the nonlocal small-scale effects. Nonlocal elasticity theory of plate is used to derive the general differential equation based on equilibrium approach to include those scale effects. Scale and surface property dependent wave characteristic equations are obtained via spectral analysis. For the present study the material properties of an anodic alumina with crystallographic of < 111 > direction are considered. The present analysis shows that the effect of surface properties on the flexural waves of nanoplates is more significant. It can be found that the flexural wavenumbers with surface effects are high as compared to that without surface effects. The scale effects show that the wavenumbers of the flexural wave become highly non-linear and tend to infinite at certain frequency. After that frequency the wave will not propagate and the corresponding wave velocities tend to zero at that frequency (escape frequency). The effects of surface stresses on the wave propagation properties of nanoplate are also captured in the present work. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A wave-based method is developed to quantify the defect due to porosity and also to locate the porous regions, in a composite beam-type structure. Wave propagation problem for a porous laminated composite beam is modeled using spectral finite element method (SFEM), based on the modified rule of mixture approach, which is used to include the effect of porosity on the stiffness and density of the composite beam structure. The material properties are obtained from the modified rule of mixture model, which are used in a conventional SFEM to develop a new model for solving wave propagation problems in porous laminated composite beam. The influence of the porosity content on the group speed and also the effect of variation in theses parameters on the time responses are studied first, in the forward problem. The change in the time responses with the change in the porosity of the structure is used as a parameter to find the porosity content in a composite beam. The actual measured response from a structure and the numerically obtained time responses are used for the estimation of porosity, by solving a nonlinear optimization problem. The effect of the length of the porous region (in the propagation direction), on the time responses, is studied. The damage force indicator technique is used to locate the porous region in a beam and also to find its length, using the measured wave propagation responses. (C) 2012 Elsevier Ltd. All rights reserved.