992 resultados para nonlinear dynamics
Resumo:
International audience
Resumo:
The well-known degrees of freedom problem originally introduced by Nikolai Bernstein (1967) results from the high abundance of degrees of freedom in the musculoskeletal system. Such abundance in motor control have two sides: i) because it is unlikely that the Central Nervous System controls each degree of freedom independently, the complexity of the control needs to be reduced, and ii) because there are many options to perform a movement, a repetition of a given movement is never the same. It leads to two main topics in motor control and biomechanics: motor coordination and motor variability. The present thesis aimed to understand how motor systems behave and adapt under specific conditions. This thesis comprises three studies that focused on three topics of major interest in the field of sports sciences and medicine: expertise, injury risk and fatigue. The first study (expertise) has focused on the muscle coordination topic to further investigate the effect of expertise on the muscle synergistic organization, which ultimately may represent the underlying neural strategies. Studies 2 (excessive medial knee displacement) and 3 (fatigue) both aimed to better understand its impact on the dynamic local stability. The main findings of the present thesis suggest: 1) there is a great robustness in muscle synergistic organization between swimmers at different levels of expertise (study 1, chapter II), which ultimately indicate that differences in muscle coordination is mainly explained by peripheral adaptations; 2) injury risk factors such as excessive medial knee displacement (study 2, chapter III) and fatigue (study 3, chapter IV) alter the dynamic local stability of the neuromuscular system towards a more unstable state. This change in dynamic local stability represents a loss of adaptability in the neuromuscular system reducing the flexibility to adapt to a perturbation.
Resumo:
El presente trabajo se realizó con el objetivo de tener una visión completa de las teorías del liderazgo, teniendo de este una concepción como proceso y poder examinar las diversas formas de aplicación en las organizaciones contemporáneas. El tema es enfocado desde la perspectiva organizacional, un mundo igualmente complejo, sin desconocer su importancia en otros ámbitos como la educación, la política o la dirección del estado. Su enfoque tiene que ver con el estudio académico del cual es la culminación y se enmarca dentro de la perspectiva constitucional de la Carta Política Colombiana que reconoce la importancia capital que tienen la actividad económica y la iniciativa privada en la constitución de empresas. Las diversas visiones del liderazgo han sido aplicadas de distintas maneras en las organizaciones contemporáneas y han generado diversos resultados. Hoy, no es posible pensar en una organización que no haya definido su forma de liderazgo y en consecuencia, confluyen en el campo empresarial multitud de teorías, sin que pueda afirmarse que una sola de ellas permita el manejo adecuado y el cumplimiento de los objetivos misionales. Por esta razón se ha llegado a concebir el liderazgo como una función compleja, en un mundo donde las organizaciones mismas se caracterizan no solo por la complejidad de sus acciones y de su conformación, sino también porque esta característica pertenece también al mundo de la globalización. Las organizaciones concebidas como máquinas que en sentido metafórico logran reconstituirse sus estructuras a medida que están en interacción con otras en el mundo globalizado. Adaptarse a las cambiantes circunstancias hace de las organizaciones conglomerados en permanente dinámica y evolución. En este ámbito puede decirse que el liderazgo es también complejo y que es el liderazgo transformacional el que más se acerca al sentido de la complejidad.
Resumo:
Nesta dissertação estudámos as séries temporais que representam a complexa dinâmica do comportamento. Demos especial atenção às técnicas de dinâmica não linear. As técnicas fornecem-nos uma quantidade de índices quantitativos que servem para descrever as propriedades dinâmicas do sistema. Estes índices têm sido intensivamente usados nos últimos anos em aplicações práticas em Psicologia. Estudámos alguns conceitos básicos de dinâmica não linear, as características dos sistemas caóticos e algumas grandezas que caracterizam os sistemas dinâmicos, que incluem a dimensão fractal, que indica a complexidade de informação contida na série temporal, os expoentes de Lyapunov, que indicam a taxa com que pontos arbitrariamente próximos no espaço de fases da representação do espaço dinâmico, divergem ao longo do tempo, ou a entropia aproximada, que mede o grau de imprevisibilidade de uma série temporal. Esta informação pode então ser usada para compreender, e possivelmente prever, o comportamento. ABSTRACT: ln this thesis we studied the time series that represent the complex dynamic behavior. We focused on techniques of nonlinear dynamics. The techniques provide us a number of quantitative indices used to describe the dynamic properties of the system. These indices have been extensively used in recent years in practical applications in psychology. We studied some basic concepts of nonlinear dynamics, the characteristics of chaotic systems and some quantities that characterize the dynamic systems, including fractal dimension, indicating the complexity of information in the series, the Lyapunov exponents, which indicate the rate at that arbitrarily dose points in phase space representation of a dynamic, vary over time, or the approximate entropy, which measures the degree of unpredictability of a series. This information can then be used to understand and possibly predict the behavior.
Resumo:
In the recent years, autonomous aerial vehicles gained large popularity in a variety of applications in the field of automation. To accomplish various and challenging tasks the capability of generating trajectories has assumed a key role. As higher performances are sought, traditional, flatness-based trajectory generation schemes present their limitations. In these approaches the highly nonlinear dynamics of the quadrotor is, indeed, neglected. Therefore, strategies based on optimal control principles turn out to be beneficial, since in the trajectory generation process they allow the control unit to best exploit the actual dynamics, and enable the drone to perform quite aggressive maneuvers. This dissertation is then concerned with the development of an optimal control technique to generate trajectories for autonomous drones. The algorithm adopted to this end is a second-order iterative method working directly in continuous-time, which, under proper initialization, guarantees quadratic convergence to a locally optimal trajectory. At each iteration a quadratic approximation of the cost functional is minimized and a decreasing direction is then obtained as a linear-affine control law, after solving a differential Riccati equation. The algorithm has been implemented and its effectiveness has been tested on the vectored-thrust dynamical model of a quadrotor in a realistic simulative setup.
Resumo:
We study trapping and propagation of a matter-wave soliton through the interface between uniform medium and a nonlinear optical lattice. Different regimes for transmission of a broad and a narrow solitons are investigated. Reflections and transmissions of solitons are predicted as a function of the lattice phase. The existence of a threshold in the amplitude of the nonlinear optical lattice, separating the transmission and reflection regimes, is verified. The localized nonlinear surface state, corresponding to the soliton trapped by the interface, is found. Variational approach predictions are confirmed by numerical simulations for the original Gross-Pitaevskii equation with nonlinear periodic potentials.
Resumo:
One of the most popular approaches to path planning and control is the potential field method. This method is particularly attractive because it is suitable for on-line feedback control. In this approach the gradient of a potential field is used to generate the robot's trajectory. Thus, the path is generated by the transient solutions of a dynamical system. On the other hand, in the nonlinear attractor dynamic approach the path is generated by a sequence of attractor solutions. This way the transient solutions of the potential field method are replaced by a sequence of attractor solutions (i.e., asymptotically stable states) of a dynamical system. We discuss at a theoretical level some of the main differences of these two approaches.
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.
Resumo:
A nonlinear calculation of the dynamics of transient pattern formation in the Fréedericksz transition is presented. A Gaussian decoupling is used to calculate the time dependence of the structure factor. The calculation confirms the range of validity of linear calculations argued in earlier work. In addition, it describes the decay of the transient pattern.
Resumo:
The brain with its highly complex structure made up of simple units,imterconnected information pathways and specialized functions has always been an object of mystery and sceintific fascination for physiologists,neuroscientists and lately to mathematicians and physicists. The stream of biophysicists are engaged in building the bridge between the biological and physical sciences guided by a conviction that natural scenarios that appear extraordinarily complex may be tackled by application of principles from the realm of physical sciences. In a similar vein, this report aims to describe how nerve cells execute transmission of signals ,how these are put together and how out of this integration higher functions emerge and get reflected in the electrical signals that are produced in the brain.Viewing the E E G Signal through the looking glass of nonlinear theory, the dynamics of the underlying complex system-the brain ,is inferred and significant implications of the findings are explored.
Resumo:
We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at tk, k = 1, 2, 3, ..., with a first guess given by the state propagated via a dynamical system model from time tk − 1 to time tk. In particular, for nonlinear dynamical systems that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ||ek|| := ||x(a)k − x(t)k|| between the estimated state x(a) and the true state x(t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ||ek||, depending on the size δ of the observation error, the reconstruction operator Rα, the observation operator H and the Lipschitz constants K(1) and K(2) on the lower and higher modes of controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c||Rα||δ with some constant c. Since ||Rα|| → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz '63 system.
Resumo:
The slow advective-timescale dynamics of the atmosphere and oceans is referred to as balanced dynamics. An extensive body of theory for disturbances to basic flows exists for the quasi-geostrophic (QG) model of balanced dynamics, based on wave-activity invariants and nonlinear stability theorems associated with exact symmetry-based conservation laws. In attempting to extend this theory to the semi-geostrophic (SG) model of balanced dynamics, Kushner & Shepherd discovered lateral boundary contributions to the SG wave-activity invariants which are not present in the QG theory, and which affect the stability theorems. However, because of technical difficulties associated with the SG model, the analysis of Kushner & Shepherd was not fully nonlinear. This paper examines the issue of lateral boundary contributions to wave-activity invariants for balanced dynamics in the context of Salmon's nearly geostrophic model of rotating shallow-water flow. Salmon's model has certain similarities with the SG model, but also has important differences that allow the present analysis to be carried to finite amplitude. In the process, the way in which constraints produce boundary contributions to wave-activity invariants, and additional conditions in the associated stability theorems, is clarified. It is shown that Salmon's model possesses two kinds of stability theorems: an analogue of Ripa's small-amplitude stability theorem for shallow-water flow, and a finite-amplitude analogue of Kushner & Shepherd's SG stability theorem in which the ‘subsonic’ condition of Ripa's theorem is replaced by a condition that the flow be cyclonic along lateral boundaries. As with the SG theorem, this last condition has a simple physical interpretation involving the coastal Kelvin waves that exist in both models. Salmon's model has recently emerged as an important prototype for constrained Hamiltonian balanced models. The extent to which the present analysis applies to this general class of models is discussed.
Resumo:
A potential problem with Ensemble Kalman Filter is the implicit Gaussian assumption at analysis times. Here we explore the performance of a recently proposed fully nonlinear particle filter on a high-dimensional but simplified ocean model, in which the Gaussian assumption is not made. The model simulates the evolution of the vorticity field in time, described by the barotropic vorticity equation, in a highly nonlinear flow regime. While common knowledge is that particle filters are inefficient and need large numbers of model runs to avoid degeneracy, the newly developed particle filter needs only of the order of 10-100 particles on large scale problems. The crucial new ingredient is that the proposal density cannot only be used to ensure all particles end up in high-probability regions of state space as defined by the observations, but also to ensure that most of the particles have similar weights. Using identical twin experiments we found that the ensemble mean follows the truth reliably, and the difference from the truth is captured by the ensemble spread. A rank histogram is used to show that the truth run is indistinguishable from any of the particles, showing statistical consistency of the method.