939 resultados para non-specific immune functions
Resumo:
Objective: To analyse and compare the expression of Palate, Lung, and Nasal Epithelium Clone (PLUNC) proteins in salivary glands from patients with and without AIDS (control group) using autopsy material. Methods: We analysed the expression of PLUNCs using immunohistochemistry in parotid (n = 45), submandibular (n = 47) and sublingual gland (n = 37) samples of AIDS patients [30 with normal histology, 21 with mycobacteriosis, 14 with cytomegalovirus (CMV) infection, 30 with chronic non-specific sialadenitis, and 30 HIV-negative controls. In situ hybridization (ISH) for SPLUNC 2 in the HIV-negative group was performed. Results: SPLUNC 1 expression was detected in the mucous acini of submandibular and sublingual glands, and SPLUNC 2 were seen in the serous cells. LPLUNC 1 expression was only positive in the salivary ducts. There was a higher expression of SPLUNC 2 in AIDS patients with CMV infection and mycobacteriosis when compared with all other groups. The intensity of staining for SPLUNC 2 was greater around the lesions than the peripheral ones. ISH for SPLUNC 2 showed perinuclear positivity in the serous cells in all HIV-negative cases. Conclusions: SPLUNC 1 and LPLUNC 1 proteins were similarly expressed in the salivary glands of AIDS patients and non-HIV patients. CMV infection and mycobacteriosis increase SPLUNC 2 expression in serous cells in the salivary gland of AIDS patients.
Resumo:
Of the hundreds of new tuberculosis ( TB) vaccine candidates some have therapeutic value in addition to their prophylactic properties. This is the case for the DNA vaccine encoding heat-shock protein 65 (DNAhsp65) from Mycobacterium leprae. However, there are concerns about the use of DNA vaccines in certain populations such as newborns and pregnant women. Thus, the optimization of vaccination strategies that circumvent this limitation is a priority. This study evaluated the efficacy of a single dose subunit vaccine based on recombinant Hsp65 protein against infection with M. tuberculosis H37Rv. The Hsp65 protein in this study was either associated or not with immunostimulants, and was encapsulated in biodegradable PLGA microspheres. Our results demonstrate that the protein was entrapped in microspheres of adequate diameter to be engulfed by phagocytes. Mice vaccinated with a single dose of Hsp65-microspheres or Hsp65 + CpG-microspheres developed both humoral and cellular-specific immune responses. However, they did not protect mice against challenge with M. tuberculosis. By contrast, Hsp65+KLK-microspheres induced specific immune responses that reduced bacilli loads and minimized lung parenchyma damage. These data suggest that a subunit vaccine based on recombinant protein Hsp65 is feasible.
Resumo:
A mononuclear phagocyte derived from B1b cells (B1CDP) has been described. As these cells migrate from the peritoneal cavity to non-specific inflammatory lesion sites and are highly phagocytic via Fc and mannose receptors, their microbicidal ability of these cells was investigated using the Coxiella burnetii cell infection model in vitro. In this report, the pattern of infection and C burnetii phase II survival in B1CDP phagosomes was compared with the pattern of infection of peritoneal macrophages from Xid mice (PM phi) and bone marrow derived macrophages (BMM phi). Infection was assessed by determining the large parasitophorous vacuole formation, the relative focus forming units and the quantification of DAPI (4`,6-diamino-2-phenylindole) fluorescence images acquired by confocal microscopy. When compared to macrophages, B1CDP are more permissive to the bacterial infection and less effective to kill them. Further, results suggest that IL-10 secreted by B1 cells are involved in their susceptibility to infection by C burnetti, since B1CDP from IL-10 KO mice are more competent to control C. burnetii infection than cells from wild type mice. These data contribute further to characterize B1CDP as a novel mononuclear phagocyte. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
The aim of this work was to test the hypothesis that the bed nucleus of the stria terminalis (BST) and noradrenergic neurotransmission therein mediate cardiovascular responses to acute restraint stress in rats. Bilateral microinjection of the non-specific synaptic blocker CoCl2 (0.1nmol/100nl) into the BST enhanced the heart rate (HR) increase associated with acute restraint without affecting the blood pressure increase, indicating that synapses within the BST influence restraint-evoked HR changes. BST pretreatment with the selective 1-adrenoceptor antagonist WB4101 (15nmol/100nl) caused similar effects to cobalt, indicating that local noradrenergic neurotransmission mediates the BST inhibitory influence on restraint-related HR responses. BST treatment with equimolar doses of the 2-adrenoceptor antagonist RX821002 or the -adrenoceptor antagonist propranolol did not affect restraint-related cardiovascular responses, reinforcing the inference that 1-adrenoceptors mediate the BST-related inhibitory influence on HR responses. Microinjection of WB4101 into the BST of rats pretreated intravenously with the anticholinergic drug homatropine methyl bromide (0.2mg/kg) did not affect restraint-related cardiovascular responses, indicating that the inhibitory influence of the BST on the restraint-evoked HR increase could be related to an increase in parasympathetic activity. Thus, our results suggest an inhibitory influence of the BST on the HR increase evoked by restraint stress, and that this is mediated by local 1-adrenoceptors. The results also indicate that such an inhibitory influence is a result of parasympathetic activation.
Resumo:
Background Hypersensitivity or uncontrolled responses against dietary antigens can lead to inflammatory disorders like food allergy and current models reflect a variety of causes but do not reveal the detailed modulation of gut immunity in response to food antigens after breakdown in mucosal tolerance. Objective To develop and characterize a murine model for food-induced intestinal inflammation and to demonstrate the modulation of gut immune response by dietary allergenic antigens. Methods C57BL/6 mice were sensitized with peanut proteins, challenged with peanut seeds and their sera and gut segments were collected for subsequent analyses. Results Sensitization and challenged with peanut seeds led to alterations in gut architecture with inflammatory response characterized by oedema in lamina propria and cell infiltrate composed mainly by eosinophils, mast cells, phagocytes, natural killer and plasma cells, together with low percentage of gamma delta(+) and CD4(+)CD25(+)Foxp3(+) cells in Peyer`s patches. These animals also presented high levels of specific IgE and IgG1 in sera and modulation of mucosal immunity was mediated by increased expression of GATA-3, IL-4, IL-13 and TNF-alpha in contrast to low IFN-gamma in the gut. Conclusion A murine model for food-induced intestinal inflammation was characterized in which modulation of gut immunity occurs by peanut antigens in consequence of T-helper type 2 (Th2) allergic response and failure of regulatory mechanisms necessary for mucosa homeostasis, resembling food allergy. This work shed some light on the understanding of the pathogenesis of gastrointestinal disorders and intolerance in the gut and supports the development of therapies for food-related enteropathies like food allergy, focusing on gut-specific immune response.
Resumo:
IL-17 is an important cytokine in the physiopathology of rheumatoid arthritis (RA). However, its participation in the genesis of nociception during RA remains undetermined. In this study, we evaluated the role of IL-17 in the genesis of articular nociception in a model of antigen (mBSA)-induced arthritis. We found that mBSA challenge in the femur-tibial joint of immunized mice induced a dose-and time-dependent mechanical hypernociception. The local IL-17 concentration within the mBSA-injected joints increased significantly over time. Moreover, co-treatment of mBSA challenged mice with an antibody against IL-17 inhibited hypernociception and neutrophil recruitment. In agreement, intraarticular injection of IL-17 induced hypernociception and neutrophil migration, which were reduced by the pre-treatment with fucoidin, a leukocyte adhesion inhibitor. The hypernociceptive effect of IL-17 was also reduced in TNFR1(-/-) mice and by pre-treatment with infliximab (anti-TNF antibody), a CXCR1/2 antagonist or by an IL-1 receptor antagonist. Consistent with these findings, we found that IL-17 injection into joints increased the production of TNF-alpha, IL-1 beta and CXCL1/KC. Treatment with doxycycline (non-specific MMPs inhibitor), bosentan (ET(A)/ET(B) antagonist), indomethacin (COX inhibitor) or guanethidine (sympathetic blocker) inhibited IL-17-induced hypernociception. IL-17 injection also increased PGE(2) production, MMP-9 activity and COX-2, MMP-9 and PPET-1 mRNA expression in synovial membrane. These results suggest that IL-17 is a novel pro-nociceptive cytokine in mBSA-induced arthritis, whose effect depends on both neutrophil migration and various pro-inflammatory mediators, as TNF-alpha, IL-1 beta, CXCR1/2 chemokines ligands, MMPs, endothelins, prostaglandins and sympathetic amines. Therefore, it is reasonable to propose IL-17 targeting therapies to control this important RA symptom. (C) 2009 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
HIV-1-infected patients frequently have opportunistic esophageal infections which, when associated with severe immunodeficiency, can be attributed to unusual pathogens. The clinical presentation of several esophageal diseases is similar and the best method for a specific diagnosis of these patients has not been well defined. To evaluate the role of the polymerase chain reaction (PCR) in the etiologic definition of esophageal ulcers in HIV-1-infected patients, 96 esophageal biopsies from 79 HIV-1-infected patients were processed by PCR using specific primers for cytomegalovirus (CMV), herpes virus (HSV), human papilloma virus (HPV), HIV-1, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare, Treponema pallidum, and Haemophilus ducreyi. The PCR results were compared to the histopathologic results. Seventy-nine patients were studied (mean age: 34 years; 62% men; median CD4 + T cell = 103.59 cells/mu l (range 1-795.2 cells/mu l). The most common endoscopic findings were as follows: esophageal candidiasis (37.1%), esophageal ulcers (24.7%), esophagitis (11.2%), and lugol-negative areas (10.1%). The histopathologic findings in the esophageal ulcers (22 biopsies) were non-specific inflammation (31.8%), HSV (36.4%), Candida (13.6%), CMV (13.6%), or HPV disease (4.5%). In the esophageal ulcer biopsies, the PCR results were negative in 27.6% of cases, and positive for HIV (65.5%), CMV (31%), HPV (20.7%), HSV (10.3%), and H. ducreyi (6.9%). The histopathologic examination did not identify a pathogen or identified only Candida in 15 biopsies of esophageal ulcers. PCR was positive in ten (66.7%) and negative in five (33.3%) of these biopsies (idiopathic ulcers). PCR detected: HIV (53.3%), CMV (20%), HPV (13.3%), and H. ducreyi (6,7%). PCR detected more etiologic agents in esophageal ulcers than histopathology and was able to detect unusual pathogens. On the other hand, sometimes more than one pathogen was detected in the esophageal ulcers, making it difficult to reach an accurate diagnosis. This finding indicates the need for more studies to evaluate the benefit of this method in the routine evaluation of esophageal ulcer biopsies in HIV-1-infected patients.
Resumo:
In an effort to develop a suitable DNA vaccine candidate for dengue, using dengue-3 virus (DENV-3) as a prototype, the genes coding for premembrane (prM) and envelope proteins (E) were inserted into an expression plasmid. After selecting recombinant clones containing prM/E genes, protein expression in the cell monolayer was detected by indirect immunofluorescence and immunoprecipitation assays. After selecting three vaccine candidates (pVAC1DEN3, pVAC2DEN3 and pVAC3DEN3), they were analyzed in vivo to determine their ability to induce a DENV-3-specific immune response. After three immunizations, the spleens of the immunized animals were isolated, and the cells were cultivated to measure cytokine levels by ELISA and used for lymphoproliferation assays. All of the animals inoculated with the recombinant clones induced neutralizing antibodies against DENV-3 and produced a T cell proliferation response after specific stimuli. Immunized and control mice were challenged with a lethal dose of DENV-3 and observed in order to assess their survival capability. The groups that presented the best survival rate after the challenge were the animals vaccinated with the pVAC3DEN3 clones, with an 80% survival rate. Thus, these data show that we have manufactured a vaccine candidate for DENV-3 that is able to induce a specific immune response and protects mice against a lethal challenge.
Resumo:
The infection with Trypanosoma cruzi leads to a vigorous and apparently uncontrolled inflammatory response in the heart. Although the parasites trigger specific immune response, the infection is not completely cleared out, a phenomenon that in other parasitic infections has been attributed to CD4(+)CD25(+) T cells (Tregs). Then, we examined the role of natural Tregs and its signaling through CD25 and GITR in the resistance against infection with T. cruzi. Mice were treated with mAb against CD25 and GITR and the parasitemia, mortality and heart pathology analyzed. First, we demonstrated that CD4(+)CD25(+)GITR(+)Foxp3(+) T cells migrate to the heart of infected mice. The treatment with anti-CD25 or anti-GITR resulted in increased mortality of these infected animals. Moreover, the treatment with anti-GITR enhanced the myocarditis, with increased migration of CD4(+), CD8(+), and CCR5(+) leukocytes, TNF-alpha production, and tissue parasitism, although it did not change the systemic nitric oxide synthesis. These data showed a limited role for CD25 signaling in controlling the inflammatory response during this protozoan infection. Also, the data suggested that signaling through GITR is determinant to control of the heart inflammation, parasite replication, and host resistance against the infection. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
The NS5 protein of the flavivirus Kunjin (KUN) contains conserved sequence motifs characteristic of RNA-dependent RNA polymerase (RdRp) activity. To investigate this activity in vitro, recombinant NS5 proteins with C-terminal (NS5CHis) and N-terminal (NS5NHis) hexahistidine tags were produced in baculovirus-infected insect cells and purified to near homogeneity by nickel affinity chromatography. Purified NS5CHis exhibited RdRp activity with both specific (9 kb KUN replicon) and non-specific (8.3 kb Semliki Forest virus replicon) RNA templates; this activity did not require the presence of additional viral and/or cellular cofactors. RdRp activity of purified NS5NHis protein was reduced in comparison to NS5CHis, while purified NS5NHis incorporating a GDD -> GVD mutation within the polymerase active site (NS5GVD) lacked RdRp activity. RNase A digestion of the RdRp reaction products indicated that they were double-stranded and of a similar size to the KUN replicative form produced in Vero cells, thus demonstrating that the KUN NS5 protein has an intrinsic, albeit low and non-specific RdRp activity in vitro, similar to that reported for recombinant RdRp of other flaviviruses. However, in contrast to RNA polymerases of other Flavivirus species, purified KUN NS5 polymerase produced a single, full-length replicon RNA product, thus demonstrating efficient processivity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Tissue type plasminogen activator is available, through recombinant technology, for thrombolytic use as alteplase. Alteplase is relatively clot specific and should cause less bleeding side effects than the non-specific agents such as streptokinase. Alteplase has been used successfully in evolving myocardial infarction (MI) to reopen occluded coronary arteries. It is probably equally effective or superior to streptokinase in opening arteries and reducing mortality in Mi. Alteplase is most effective when given early in Mi and is probably ineffective when given 12 h after the onset of symptoms. The effectiveness of alteplase in Mi can be increased by front loading with a bolus of 15 mg, followed by an infusion of 50 mg over 30 min and 35 mg over 60 min. Percutaneous transluminal coronary angioplasty or stenting is associated with a greater patency and lower rates of serious bleeding, recurrent ischaemia and death than alteplase in MI and is likely to take over from alteplase as the standard Mi treatment. A reduced dose of alteplase to increase coronary artery patency prior to angioplasty may be useful in Mi. An exciting new indication for the use of alteplase is in stroke, where it has become the first beneficial intervention. Alteplase is used to reopen occluded cerebral vessels but is associated with an increased risk of intracerebral haemorrhage. Alteplase is beneficial if given within 3 h of the onset of stroke but not after this time period. Therefore, the next challenge is to increase the percentage of people being diagnosed and treated within this period. Clinical trials have not established a role for alteplase in the treatment of acute coronary syndromes or deep vein thrombosis. However, alteplase is useful in treating pulmonary thromboembolism and peripheral vascular disease.
Resumo:
Two experiments investigated the effects of the sensory modality of the lead and of the blink-eliciting stimulus during lead stimulus modality change on blink modulation at lead intervals of 2500 and 3500 ins. Participants were presented with acoustic, visual, or tactile change stimuli after habituation training with lead stimuli from the same or a different sensory modality. In Experiment 1, latency and magnitude of the acoustic blink were facilitated during a change to acoustic or visual lead stimuli, but not during a change to tactile lead stimuli. After habituation to acoustic lead stimuli, blink magnitude was smaller during tactile change stimuli than during habituation stimuli. The latter finding was replicated in Experiment 2 in which blink was elicited by electrical stimulation of the trigeminal nerve. The consistency of the findings across different combinations of lead stimulus and blink-eliciting stimulus modalities does not support a modality-specific account of attentional blink modulation. Rather, blink modulation during generalized orienting reflects modality non-specific processes, although modulation may not always be found during tactile lead stimuli. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Aims: This study was designed to investigate the influence of angiotensin II (Ang II) and nitric oxide (NO) on autoregulation of renal perfusion. Methods: Autoregulation was investigated in isolated perfused kidneys (IPRK) from Sprague-Dawley rats during stepped increases in perfusion pressure. Results: Ang II (75-200 pM) produced dose-dependent enhancement of autoregulation whereas phenylephrine produced no enhancement and impaired autoregulation of GFR. Enhancement by Ang II was inhibited by the AT(1) antagonist, Losartan, and the superoxide scavenger, Tempol. Under control conditions nitric oxide synthase (NOS) inhibition by 10 muM N-omega-nitro-L-arginine methyl ester (L-NAME) facilitated autoregulation in the presence of non-specific cyclooxygenase (COX) inhibition by 10 muM indomethacin. Both COX and combined NOS/COX inhibition reduced the autoregulatory threshold concentration of Ang II. Facilitation by 100 pM Ang II was inhibited by 100 muM frusemide. Methacholine (50 nM) antagonised Ang II-facilitated autoregulation in the presence and absence of NOS/COX inhibition. Infusion of the NO donor, 1 muM sodium nitroprusside, inhibited L-NAME enhancement of autoregulation under control conditions and during Ang II infusion. Conclusions: The results suggest than an excess of NO impairs autoregulation under control conditions in the IPRK and that endogenous and exogenous NO, vasodilatory prostaglandins and endothelium-derived hyperpolarizing factor (EDHF) activity antagonise Ang II-facilitated autoregulation. Ang II also produced a counterregulatory vasodilatory response that included prostaglandin and NO release. We suggest that Ang II facilitates autoregulation by a tubuloglomerular feedback-dependent mechanism through AT(1) receptor-mediated depletion of nitric oxide, probably by stimulating generation of superoxide.
Resumo:
Human cytomegalovirus (HCMV) can establish both nonproductive (latent) and productive (lytic) infections. Many of the proteins expressed during these phases of infection could be expected to be targets of the immune response; however, much of our understanding of the CD8(+)-T-cell response to HCMV is mainly based on the pp65 antigen. Very little is known about T-cell control over other antigens expressed during the different stages of virus infection; this imbalance in our understanding undermines the importance of these antigens in several aspects of HCMV disease pathogenesis. In the present study, an efficient and rapid strategy based on predictive bioinformatics and ex vivo functional T-cell assays was adopted to profile CD8(+)-T-cell responses to a large panel of HCMV antigens expressed during different phases of replication. These studies revealed that CD8(+)-T-cell responses to HCMV often contained multiple antigen-specific reactivities, which were not just constrained to the previously identified pp65 or IE-1 antigens. Unexpectedly, a number of viral proteins including structural, early/late antigens and HCMV-encoded immunomodulators (pp28, pp50, gH, gB, US2, US3, US6, and UL18) were also identified as potential targets for HCMV-specific CD8(+)-T-cell immunity. Based on this extensive analysis, numerous novel HCMV peptide epitopes and their HLA-restricting determinants recognized by these T cells have been defined. These observations contrast with previous findings that viral interference with the antigen-processing pathway during lytic infection would render immediate-early and early/late proteins less immunogenic. This work strongly suggests that successful HCMV-specific immune control in healthy virus carriers is dependent on a strong T-cell response towards a broad repertoire of antigens.
Resumo:
Background Peroxisome proliferator activated receptor gamma (PPARgamma) is a ligand-activated transcription factor known to be central to both adipose tissue development and insulin action. Growth of adipose tissue requires differentiation of preadipocytes with acquisition of specific cellular functions including insulin sensitivity, leptin secretion and the capacity to store triglyceride. Dietary fatty acids and members of the thiazolidinedione class of compounds have been reported to influence adipogenesis at the transcriptional level. Here, we compare the effects of a dietary fatty acid, linoleic acid, and a thiazolidinedione, rosiglitazone, on biochemical and functional aspects of human preadipocyte differentiation in vitro . Materials and methods Human omental and subcutaneous preadipocytes were subcultured 2-3 times and subsequently differentiated for 21 days in the presence of either linoleic acid or rosiglitazone. Differentiation was assessed using a number of biochemical and functional parameters. Results Omental and subcutaneous preadipocytes differentiated in the presence of linoleic acid showed marked cytoplasmic triacylglycerol accumulation however, no biochemical markers of differentiation (LPL expression, G3PDH gene expression and enzyme activity and leptin expression or secretion) were detected. In contrast, treatment of these cells with rosiglitazone induced full biochemical differentiation as judged by all markers assessed, despite comparatively little lipid accumulation. The rosiglitazone effects were subcutaneous depot-specific. Cells treated with linoleic acid showed decreased glucose uptake cf rosiglitazone-treated cells. A luciferase reporter assay demonstrated that rosiglitazone potently activates h-peroxisome proliferator activated receptor gamma while linoleic acid had no effect. Conclusions These studies demonstrate that (a) human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation; (b) while omental preadipocytes are refractory to biochemical differentiation in vitro , they are able to accumulate triacylglycerol; and (c) rosiglitazone and linoleic acid may exert their effects via different biochemical pathways.