991 resultados para non-purgeble organic carbon
Resumo:
During IODP Expedition 302 (Arctic Coring Expedition-ACEX), the first scientific drilling campaign in the permantly ice-covered central Arctic Ocean, a 430 m thick sequence of upper Cretaceaous to Quaternary sediments has been drilled. The lower half of this sequence is composed of organic-carbon-rich (black shale-type) sediments with total organic carbon contents of about 1-14%. Significant amounts of the organic matter preserved in these sediments is of algae-type origin and accumulated under anoxic/euxinic conditions. Here, for the first time detailed data on the source-rock potential of these black shales are presented, indicating that most of the Eocene sediments have a (fair to) good source-rock potential, prone to generate a gas/oil mixture. The source-rock potential of the Campanian and upper Paleocene sediments, on the other hand, is rather low. The presence of oil or gas already generated in situ, however, can be ruled out due to the immaturity of the ACEX sediments.
Resumo:
The Cretaceous has long been recognized as a time when greenhouse conditions were fueled by elevated atmospheric CO2 and accompanied by perturbations of the global carbon cycle described as oceanic anoxic events (OAEs). Yet, the magnitude and frequency of temperature change during this interval of warm and equable climate are poorly constrained. Here we present a high-resolution record of sea-surface temperatures (SSTs) reconstructed using the TEX86 paleothermometer for a sequence of early Aptian organic-rich sediments deposited during the first Cretaceous OAE (OAE1a) at Shatsky Rise in the tropical Pacific. SSTs range from ~30 to ~36 °C and include two prominent cooling episodes of ~4 °C. The cooler temperatures reflect significant temperature instability in the tropics likely triggered by changes in carbon cycling induced by enhanced burial of organic matter. SST instability recorded during the early Aptian in the Pacific is comparable to that reported for the late Albian-early Cenomanian in the Atlantic, suggesting that such climate perturbations may have recurred during the Cretaceous with concomitant consequences for biota and the marine environment.
Resumo:
Piston core M77/2-024-5 was retrieved during the M77/2 cruise of Research Vessel Meteor in December 2008. Total organic carbon concentrations were determined using a Carlo Erba Element Analyzer (NA1500). Prior to analysis carbon bound to carbonate minerals was removed by leaching the sediment with 1 M HCl. Bulk nitrogen isotope ratios were determined using a Carlo Erba Element Analyzer (NA1500) coupled to a DeltaPlusXL isotope ratio mass spectrometer. Major and trace metals were analyzed after microwave-assisted (CEM MARS-5) acid digestion (HCl, HNO3 and HF) by inductively coupled plasma optical emission spectrometry (aluminum, titanium and iron) (Teledyne Leeman Prodigy) and inductively coupled plasma mass spectrometry (molybdenum and uranium) (THERMO X-Series 2).