970 resultados para natural experiments
Resumo:
Coal seam gas (CSG) waters are a by-product of natural gas extraction from un derground coal seams. The main issue with these waters is their elevated sodium content, which in conjunction with their low calcium and magnesium concentrations can generate soil infiltration problems in the long run , as well as short term toxicity effects in plants due to the sodium ion itself. Zeolites are minerals having a porous structure, crystalline characteristics, and an alumino-silicate configuration resulting in an overall negative charge which is balanced by loosely held cations. In New Zealand, Ngakuru zeolites have been mined for commercial use in wastewater treatment applications, cosmetics, and pet litter. This research focuses on assessing the capacity of Ngakuru zeolites to reduce sodium concentrations of CSG waters from Maramarua. Batch and column test (flow through) experiments revealed that Ngakuru zeolites are capable of sorbing sodium cations from concentrated solutions of sodium. In b atch tests, the sodium adsorption capacity ranged from 5.0 to 34.3meq/100g depending on the solution concentration and on the number of times the zeolite had been regenerated. Regeneration with CaCl2 was foun d to be effective. The calculated sodium adsorption capacity of Ngakuru zeolites under flow-through conditions ranged from 11 to 42meq/100g depending on the strength of the solution being treated and on w hether the zeolites had been previously regenerated. The slow kinetics and low cost of the zeolities, coupled with potentially remote sites for gas extraction, could make semi-batch operational processes without regeneration more favourable than in more industrial ion exchange situations.
Resumo:
Recent studies have detected a dominant accumulation mode (~100 nm) in the Sea Spray Aerosol (SSA) number distribution. There is evidence to suggest that particles in this mode are composed primarily of organics. To investigate this hypothesis we conducted experiments on NaCl, artificial SSA and natural SSA particles with a Volatility-Hygroscopicity-Tandem-Differential-Mobility-Analyser (VH-TDMA). NaCl particles were atomiser generated and a bubble generator was constructed to produce artificial and natural SSA particles. Natural seawater samples for use in the bubble generator were collected from biologically active, terrestrially-affected coastal water in Moreton Bay, Australia. Differences in the VH-TDMA-measured volatility curves of artificial and natural SSA particles were used to investigate and quantify the organic fraction of natural SSA particles. Hygroscopic Growth Factor (HGF) data, also obtained by the VH-TDMA, were used to confirm the conclusions drawn from the volatility data. Both datasets indicated that the organic fraction of our natural SSA particles evaporated in the VH-TDMA over the temperature range 170–200°C. The organic volume fraction for 71–77 nm natural SSA particles was 8±6%. Organic volume fraction did not vary significantly with varying water residence time (40 secs to 24 hrs) in the bubble generator or SSA particle diameter in the range 38–173 nm. At room temperature we measured shape- and Kelvin-corrected HGF at 90% RH of 2.46±0.02 for NaCl, 2.35±0.02 for artifical SSA and 2.26±0.02 for natural SSA particles. Overall, these results suggest that the natural accumulation mode SSA particles produced in these experiments contained only a minor organic fraction, which had little effect on hygroscopic growth. Our measurement of 8±6% is an order of magnitude below two previous measurements of the organic fraction in SSA particles of comparable sizes. We stress that our results were obtained using coastal seawater and they can’t necessarily be applied on a regional or global ocean scale. Nevertheless, considering the order of magnitude discrepancy between this and previous studies, further research with independent measurement techniques and a variety of different seawaters is required to better quantify how much organic material is present in accumulation mode SSA.
Resumo:
Compressed natural gas (CNG) engines are thought to be less harmful to the environment than conventional diesel engines, especially in terms of particle emissions. Although, this is true with respect to particulate matter (PM) emissions, results of particle number (PN) emission comparisons have been inconclusive. In this study, results of on-road and dynamometer studies of buses were used to derive several important conclusions. We show that, although PN emissions from CNG buses are significantly lower than from diesel buses at low engine power, they become comparable at high power. For diesel buses, PN emissions are not significantly different between acceleration and operation at steady maximum power. However, the corresponding PN emissions from CNG buses when accelerating are an order of magnitude greater than when operating at steady maximum power. During acceleration under heavy load, PN emissions from CNG buses are an order of magnitude higher than from diesel buses. The particles emitted from CNG buses are too small to contribute to PM10 emissions or contribute to a reduction of visibility, and may consist of semivolatile nanoparticles.
Resumo:
Motor vehicle emission factors are generally derived from driving tests mimicking steady state conditions or transient drive cycles. However, neither of these test conditions completely represents real world driving conditions. In particular, they fail to determine emissions generated during the accelerating phase – a condition in which urban buses spend much of their time. In this study we analyse and compare the results of time-dependant emission measurements conducted on diesel and compressed natural gas (CNG) buses during an urban driving cycle on a chassis dynamometer and we derive power-law expressions relating carbon dioxide (CO2) emission factors to the instantaneous speed while accelerating from rest. Emissions during acceleration are compared with that during steady speed operation. These results have important implications for emission modelling particularly under congested traffic conditions.
Resumo:
In computational linguistics, information retrieval and applied cognition, words and concepts are often represented as vectors in high dimensional spaces computed from a corpus of text. These high dimensional spaces are often referred to as Semantic Spaces. We describe a novel and efficient approach to computing these semantic spaces via the use of complex valued vector representations. We report on the practical implementation of the proposed method and some associated experiments. We also briefly discuss how the proposed system relates to previous theoretical work in Information Retrieval and Quantum Mechanics and how the notions of probability, logic and geometry are integrated within a single Hilbert space representation. In this sense the proposed system has more general application and gives rise to a variety of opportunities for future research.
Resumo:
To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments.
Resumo:
Rice grassy stunt virus is a member of the genus Tenuivirus, is persistently transmitted by a brown planthopper, and has occurred in rice plants in South, Southeast, and East Asia (similar to North and South America). We determined the complete nucleotide (nt) sequences of RNAs 1 (9760 nt), 2 (4069 nt), 3 (3127 nt), 4 (2909 nt), 5 (2704 nt), and 6 (2590 nt) of a southern Philippine isolate from South Cotabato and compared them with those of a northern Philippine isolate from Laguna (Toriyama et al., 1997, 1998). The numbers of nucleotides in the terminal untranslated regions and open reading frames were identical between the two isolates except for the 5′ untranslated region of the complementary strand of RNA 4. Overall nucleotide differences between the two isolates were only 0.08% in RNA 1, 0.58% in RNA 4, and 0.26% in RNA 5, whereas they were 2.19% in RNA 2, 8.38% in RNA 3, and 3.63% in RNA 6. In the intergenic regions, the two isolates differed by 9.12% in RNA 2, 11.6% in RNA 3, and 6.86% in RNA 6 with multiple consecutive nucleotide deletion/insertions, whereas they differed by only 0.78% in RNA 4 and 0.34% in RNA 5. The nucleotide variation in the intergenic region of RNA 6 within the South Cotabato isolate was only 0.33%. These differences in accumulation of mutations among individual RNA segments indicate that there was genetic reassortment in the two geographical isolates; RNAs 1, 4, and 5 of the two isolates came from a common ancestor, whereas RNAs 2, 3, and 6 were from two different ancestors.
Resumo:
This paper presents a robust stochastic framework for the incorporation of visual observations into conventional estimation, data fusion, navigation and control algorithms. The representation combines Isomap, a non-linear dimensionality reduction algorithm, with expectation maximization, a statistical learning scheme. The joint probability distribution of this representation is computed offline based on existing training data. The training phase of the algorithm results in a nonlinear and non-Gaussian likelihood model of natural features conditioned on the underlying visual states. This generative model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The instantiated likelihoods are expressed as a Gaussian mixture model and are conveniently integrated within existing non-linear filtering algorithms. Example applications based on real visual data from heterogenous, unstructured environments demonstrate the versatility of the generative models.
Resumo:
This paper presents a robust stochastic model for the incorporation of natural features within data fusion algorithms. The representation combines Isomap, a non-linear manifold learning algorithm, with Expectation Maximization, a statistical learning scheme. The representation is computed offline and results in a non-linear, non-Gaussian likelihood model relating visual observations such as color and texture to the underlying visual states. The likelihood model can be used online to instantiate likelihoods corresponding to observed visual features in real-time. The likelihoods are expressed as a Gaussian Mixture Model so as to permit convenient integration within existing nonlinear filtering algorithms. The resulting compactness of the representation is especially suitable to decentralized sensor networks. Real visual data consisting of natural imagery acquired from an Unmanned Aerial Vehicle is used to demonstrate the versatility of the feature representation.
Resumo:
The flying capacitor multicell inverter (FCMI) possesses natural balancing property. With the phase-shifted (PS) carrier-based scheme, natural balancing can be achieved in a straightforward manner. However, to achieve natural balancing with the harmonically optimal phase-disposition (PD) carrierbased scheme, the conventional approaches require (n-1) x (n-1) trapezoidal carrier signals for an n-level inverter, which is (n-1) x (n-2) times more than that in the standard PD scheme. This paper proposes two improved natural balancing strategies for FMI under PD scheme, which use the same (n-1) carrier signals as used in the standard PD scheme. In the first scheme, on-line detection is performed of the band in which the modulation signal is located, corresponding period number of the carrier, and rising or falling half cycle of the carrier waveform to generate the switching signals based on certain rules. In the second strategy, the output voltage level selection is first processed and the switching signals are then generated according to a rule based on preferential cell selection algorithm. These methods are easy to use and can be simply implemented as compared to the other available methods. Simulation and experimental results are presented for a five-level inverter to verify these proposed schemes.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the advantage of cheaper and increased sampling but make available so much data that automated analysis becomes essential. The report describes a number of tools for automated analysis of recordings, including noise removal from spectrograms, acoustic event detection, event pattern recognition, spectral peak tracking, syntactic pattern recognition applied to call syllables, and oscillation detection. These algorithms are applied to a number of animal call recognition tasks, chosen because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are frequent contaminants of recordings of the terrestrial environment; (2) the detection of bird and calls; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.
Resumo:
During secondary fracture healing, various tissue types including new bone are formed. The local mechanical strains play an important role in tissue proliferation and differentiation. To further our mechanobiological understanding of fracture healing, a precise assessment of local strains is mandatory. Until now, static analyses using Finite Elements (FE) have assumed homogenous material properties. With the recent quantification of both the spatial tissue patterns (Vetter et al., 2010) and the development of elastic modulus of newly formed bone during healing (Manjubala et al., 2009), it is now possible to incorporate this heterogeneity. Therefore, the aim of this study is to investigate the effect of this heterogeneity on the strain patterns at six successive healing stages. The input data of the present work stemmed from a comprehensive cross-sectional study of sheep with a tibial osteotomy (Epari et al., 2006). In our FE model, each element containing bone was described by a bulk elastic modulus, which depended on both the local area fraction and the local elastic modulus of the bone material. The obtained strains were compared with the results of hypothetical FE models assuming homogeneous material properties. The differences in the spatial distributions of the strains between the heterogeneous and homogeneous FE models were interpreted using a current mechanobiological theory (Isakson et al., 2006). This interpretation showed that considering the heterogeneity of the hard callus is most important at the intermediate stages of healing, when cartilage transforms to bone via endochondral ossification.
Resumo:
The oriented single crystal Raman spectrum of leiteite has been obtained and the spectra related to the structure of the mineral. The intensities of the observed bands vary according to orientation allowing them to be assigned to either Ag or Bg modes. Ag bands are generally the most intense in the CAAC spectrum, followed by ACCA, CBBC, and ABBA whereas Bg bands are generally the most intense in the CBAC followed by ABCA. The CAAC and ACCA spectra are identical, as are those obtained in the CBBC and ABBA orientations. Both cross-polarised spectra are identical. Band assignments were made with respect to bridging and non-bridging As-O bonds.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation and can also improve productivity and enhance system’s safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. Although a variety of prognostic methodologies have been reported recently, their application in industry is still relatively new and mostly focused on the prediction of specific component degradations. Furthermore, they required significant and sufficient number of fault indicators to accurately prognose the component faults. Hence, sufficient usage of health indicators in prognostics for the effective interpretation of machine degradation process is still required. Major challenges for accurate longterm prediction of remaining useful life (RUL) still remain to be addressed. Therefore, continuous development and improvement of a machine health management system and accurate long-term prediction of machine remnant life is required in real industry application. This thesis presents an integrated diagnostics and prognostics framework based on health state probability estimation for accurate and long-term prediction of machine remnant life. In the proposed model, prior empirical (historical) knowledge is embedded in the integrated diagnostics and prognostics system for classification of impending faults in machine system and accurate probability estimation of discrete degradation stages (health states). The methodology assumes that machine degradation consists of a series of degraded states (health states) which effectively represent the dynamic and stochastic process of machine failure. The estimation of discrete health state probability for the prediction of machine remnant life is performed using the ability of classification algorithms. To employ the appropriate classifier for health state probability estimation in the proposed model, comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault data of three different faults in a high pressure liquefied natural gas (HP-LNG) pump. As a result of this comparison study, SVMs were employed in heath state probability estimation for the prediction of machine failure in this research. The proposed prognostic methodology has been successfully tested and validated using a number of case studies from simulation tests to real industry applications. The results from two actual failure case studies using simulations and experiments indicate that accurate estimation of health states is achievable and the proposed method provides accurate long-term prediction of machine remnant life. In addition, the results of experimental tests show that the proposed model has the capability of providing early warning of abnormal machine operating conditions by identifying the transitional states of machine fault conditions. Finally, the proposed prognostic model is validated through two industrial case studies. The optimal number of health states which can minimise the model training error without significant decrease of prediction accuracy was also examined through several health states of bearing failure. The results were very encouraging and show that the proposed prognostic model based on health state probability estimation has the potential to be used as a generic and scalable asset health estimation tool in industrial machinery.