967 resultados para multiview visualization
Resumo:
In this paper we describe a novel, extensible visualization system currently under development at Aston University. We introduce modern programming methods, such as the use of data driven programming, design patterns, and the careful definition of interfaces to allow easy extension using plug-ins, to 3D landscape visualization software. We combine this with modern developments in computer graphics, such as vertex and fragment shaders, to create an extremely flexible, extensible real-time near photorealistic visualization system. In this paper we show the design of the system and the main sub-components. We stress the role of modern programming practices and illustrate the benefits these bring to 3D visualization. © 2006 Springer-Verlag Berlin Heidelberg.
Resumo:
A visualization plot of a data set of molecular data is a useful tool for gaining insight into a set of molecules. In chemoinformatics, most visualization plots are of molecular descriptors, and the statistical model most often used to produce a visualization is principal component analysis (PCA). This paper takes PCA, together with four other statistical models (NeuroScale, GTM, LTM, and LTM-LIN), and evaluates their ability to produce clustering in visualizations not of molecular descriptors but of molecular fingerprints. Two different tasks are addressed: understanding structural information (particularly combinatorial libraries) and relating structure to activity. The quality of the visualizations is compared both subjectively (by visual inspection) and objectively (with global distance comparisons and local k-nearest-neighbor predictors). On the data sets used to evaluate clustering by structure, LTM is found to perform significantly better than the other models. In particular, the clusters in LTM visualization space are consistent with the relationships between the core scaffolds that define the combinatorial sublibraries. On the data sets used to evaluate clustering by activity, LTM again gives the best performance but by a smaller margin. The results of this paper demonstrate the value of using both a nonlinear projection map and a Bernoulli noise model for modeling binary data.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.
Resumo:
Visualization of high-dimensional data has always been a challenging task. Here we discuss and propose variants of non-linear data projection methods (Generative Topographic Mapping (GTM) and GTM with simultaneous feature saliency (GTM-FS)) that are adapted to be effective on very high-dimensional data. The adaptations use log space values at certain steps of the Expectation Maximization (EM) algorithm and during the visualization process. We have tested the proposed algorithms by visualizing electrostatic potential data for Major Histocompatibility Complex (MHC) class-I proteins. The experiments show that the variation in the original version of GTM and GTM-FS worked successfully with data of more than 2000 dimensions and we compare the results with other linear/nonlinear projection methods: Principal Component Analysis (PCA), Neuroscale (NSC) and Gaussian Process Latent Variable Model (GPLVM).
Resumo:
This paper addresses the problem of obtaining complete, detailed reconstructions of textureless shiny objects. We present an algorithm which uses silhouettes of the object, as well as images obtained under changing illumination conditions. In contrast with previous photometric stereo techniques, ours is not limited to a single viewpoint but produces accurate reconstructions in full 3D. A number of images of the object are obtained from multiple viewpoints, under varying lighting conditions. Starting from the silhouettes, the algorithm recovers camera motion and constructs the object's visual hull. This is then used to recover the illumination and initialize a multiview photometric stereo scheme to obtain a closed surface reconstruction. There are two main contributions in this paper: First, we describe a robust technique to estimate light directions and intensities and, second, we introduce a novel formulation of photometric stereo which combines multiple viewpoints and, hence, allows closed surface reconstructions. The algorithm has been implemented as a practical model acquisition system. Here, a quantitative evaluation of the algorithm on synthetic data is presented together with complete reconstructions of challenging real objects. Finally, we show experimentally how, even in the case of highly textured objects, this technique can greatly improve on correspondence-based multiview stereo results.
Resumo:
We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.
Resumo:
Although the importance of dataset fitness-for-use evaluation and intercomparison is widely recognised within the GIS community, no practical tools have yet been developed to support such interrogation. GeoViQua aims to develop a GEO label which will visually summarise and allow interrogation of key informational aspects of geospatial datasets upon which users rely when selecting datasets for use. The proposed GEO label will be integrated in the Global Earth Observation System of Systems (GEOSS) and will be used as a value and trust indicator for datasets accessible through the GEO Portal. As envisioned, the GEO label will act as a decision support mechanism for dataset selection and thereby hopefully improve user recognition of the quality of datasets. To date we have conducted 3 user studies to (1) identify the informational aspects of geospatial datasets upon which users rely when assessing dataset quality and trustworthiness, (2) elicit initial user views on a GEO label and its potential role and (3), evaluate prototype label visualisations. Our first study revealed that, when evaluating quality of data, users consider 8 facets: dataset producer information; producer comments on dataset quality; dataset compliance with international standards; community advice; dataset ratings; links to dataset citations; expert value judgements; and quantitative quality information. Our second study confirmed the relevance of these facets in terms of the community-perceived function that a GEO label should fulfil: users and producers of geospatial data supported the concept of a GEO label that provides a drill-down interrogation facility covering all 8 informational aspects. Consequently, we developed three prototype label visualisations and evaluated their comparative effectiveness and user preference via a third user study to arrive at a final graphical GEO label representation. When integrated in the GEOSS, an individual GEO label will be provided for each dataset in the GEOSS clearinghouse (or other data portals and clearinghouses) based on its available quality information. Producer and feedback metadata documents are being used to dynamically assess information availability and generate the GEO labels. The producer metadata document can either be a standard ISO compliant metadata record supplied with the dataset, or an extended version of a GeoViQua-derived metadata record, and is used to assess the availability of a producer profile, producer comments, compliance with standards, citations and quantitative quality information. GeoViQua is also currently developing a feedback server to collect and encode (as metadata records) user and producer feedback on datasets; these metadata records will be used to assess the availability of user comments, ratings, expert reviews and user-supplied citations for a dataset. The GEO label will provide drill-down functionality which will allow a user to navigate to a GEO label page offering detailed quality information for its associated dataset. At this stage, we are developing the GEO label service that will be used to provide GEO labels on demand based on supplied metadata records. In this presentation, we will provide a comprehensive overview of the GEO label development process, with specific emphasis on the GEO label implementation and integration into the GEOSS.
Resumo:
Recently, we have developed the hierarchical Generative Topographic Mapping (HGTM), an interactive method for visualization of large high-dimensional real-valued data sets. In this paper, we propose a more general visualization system by extending HGTM in three ways, which allows the user to visualize a wider range of data sets and better support the model development process. 1) We integrate HGTM with noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM). This enables us to visualize data of inherently discrete nature, e.g., collections of documents, in a hierarchical manner. 2) We give the user a choice of initializing the child plots of the current plot in either interactive, or automatic mode. In the interactive mode, the user selects "regions of interest," whereas in the automatic mode, an unsupervised minimum message length (MML)-inspired construction of a mixture of LTMs is employed. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. 3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualization plots, since they can highlight the boundaries between data clusters. We illustrate our approach on a toy example and evaluate it on three more complex real data sets. © 2005 IEEE.
Resumo:
Implementation of GEOSS/GMES initiative requires creation and integration of service providers, most of which provide geospatial data output from Grid system to interactive user. In this paper approaches of DOS- centers (service providers) integration used in Ukrainian segment of GEOSS/GMES will be considered and template solutions for geospatial data visualization subsystems will be suggested. Developed patterns are implemented in DOS center of Space Research Institute of National Academy of Science of Ukraine and National Space Agency of Ukraine (NASU-NSAU).
Resumo:
In the article, we have reviewed the means for visualization of syntax, semantics and source code for programming languages which support procedural and/or object-oriented paradigm. It is examined how the structure of the source code of the structural and object-oriented programming styles has influenced different approaches for their teaching. We maintain a thesis valid for the object-oriented programming paradigm, which claims that the activities for design and programming of classes are done by the same specialist, and the training of this specialist should include design as well as programming skills and knowledge for modeling of abstract data structures. We put the question how a high level of abstraction in the object-oriented paradigm should be presented in simple model in the design stage, so the complexity in the programming stage stay low and be easily learnable. We give answer to this question, by building models using the UML notation, as we take a concrete example from the teaching practice including programming techniques for inheritance and polymorphism.
Resumo:
We present a new program tool for interactive 3D visualization of some fundamental algorithms for representation and manipulation of Bézier curves. The program tool has an option for demonstration of one of their most important applications - in graphic design for creating letters by means of cubic Bézier curves. We use Java applet and JOGL as our main visualization techniques. This choice ensures the platform independency of the created applet and contributes to the realistic 3D visualization. The applet provides basic knowledge on the Bézier curves and is appropriate for illustrative and educational purposes. Experimental results are included.
Resumo:
Джурджица Такачи - В доклада се разглеждат дидактически подходи за решаване на задачи, упражнения и доказване на теореми с използване на динамичен софтуер, по-специално – с вече широко разпространената система GeoGebra. Въз основа на концепция-та на Пойа се анализира използването на GeoGebra като когнитивно средство за решаване на задачи и за обсъждане на техни възможни обобщения.
Resumo:
The report presents the film 10th century. The South of the Royal Palace in Great Preslav. It consists of two parts – 10th century. The Royal Palace in Great Prelsav. The Square with the Pinnacle and The Ruler’s Lodgings. 3D and virtual reconstructions of an architectural ensemble – part of the Preslav Royal Court unearthed during archaeological researches are used in the film. 3D documentaries have already gained popularity around the world and are well received by both scholars and the public at large. One of the distinguished tourist destinations in Bulgaria is Great Preslav – capital of the mediaeval Bulgarian state and a significant cultural center of the European Southeast in 9th–10th centuries, too. The first part of the film is created with the financial support of America for Bulgaria Foundation and the second – with the funding of Bulgarian National Science Fund at the Ministry of Education, Youth and Science. A team of almost 20 members worked on the film, including computer specialists, professional actors, and translators in the four main European languages – English, German, French and Russian, Trima Sound Recording Studio. In the first part of the 3D film are shown a segment of the Royal Palace, the square with the water pinnacle and the adjacent buildings – an important structural element of the town-planning of the Preslav Court center in the 10th century. In the second part the accent is the southern part of the Royal Palace in Great Preslav, where the personal residence of the Preslav ruler’s dynasty is situated. The work on the virtual reconstruction was done by Virtual Archaeology club at the Mathematical School, Shumen. Due to the efforts of its members it is now clear how the square in front of the southern gate looked like.
Resumo:
The object of this paper is presenting the University of Economics – Varna, using a 3D model with 3Ds MAX. Created in 1920, May 14, University of Economics - Varna is a cultural institution with a place and style of its own. With the emergence of the three-dimensional modeling we entered a new stage of the evolution of computer graphics. The main target is to preserve the historical vision, to demonstrate forward-thinking and using of future-oriented approaches.
Resumo:
Shield UI’s advanced framework for creating rich charts and graphs is the first of a line of data visualization components, giving web developers the power for embedding rich graphics in their web projects with minimum effort. Built with HTML, CSS3 and packaged as a jQuery plugin, the library has full support for legacy and modern desktop web browsers, as well as the latest mobile devices.