855 resultados para multimodal terminals
Resumo:
This study examined the effect of prolonged inactivity, associated with aestivation, on neuromuscular transmission in the green-striped burrowing frog, Cyclorana alboguttata. We compared the structure and function of the neuromuscular junctions on the iliofibularis muscle from active C. alboguttata and from C. alboguttata that had been aestivating for 6 months. Despite the prolonged period of immobility, there was no significant difference in the shape of the terminals (primary, secondary or tertiary branches) or the length of primary terminal branches between aestivators and non-aestivators. Furthermore, there was no significant difference in the membrane potentials of muscle fibres or in miniature end plate potential (EPP) frequency and amplitude. However, there was a significant decrease in evoked transmitter release characterised by a 56% decrease in mean EPP amplitude, and a 29% increase in the failure rate of nerve terminal action potentials to evoke transmitter release. The impact of this suite of neuromuscular characteristics on the locomotor performance of emergent frogs is discussed.
Resumo:
THE RIGORS OF ESTABLISHING INNATENESS and domain specificity pose challenges to adaptationist models of music evolution. In articulating a series of constraints, the authors of the target articles provide strategies for investigating the potential origins of music. We propose additional approaches for exploring theories based on exaptation. We discuss a view of music as a multimodal system of engaging with affect, enabled by capacities of symbolism and a theory of mind.
Resumo:
A vision of the future of intraoperative monitoring for anesthesia is presented-a multimodal world based on advanced sensing capabilities. I explore progress towards this vision, outlining the general nature of the anesthetist's monitoring task and the dangers of attentional capture. Research in attention indicates different kinds of attentional control, such as endogenous and exogenous orienting, which are critical to how awareness of patient state is maintained, but which may work differently across different modalities. Four kinds of medical monitoring displays are surveyed: (1) integrated visual displays, (2) head-mounted displays, (3) advanced auditory displays and (4) auditory alarms. Achievements and challenges in each area are outlined. In future research, we should focus more clearly on identifying anesthetists' information needs and we should develop models of attention in different modalities and across different modalities that are more capable of guiding design. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Little is known about the nature of the calcium channels controlling neurotransmitter release from preganglionic parasympathetic nerve fibres. In the present study, the effects of selective calcium channel antagonists and amiloride were investigated on ganglionic neurotransmission. Conventional intracellular recording and focal extracellular recording techniques were used in rat submandibular and pelvic ganglia, respectively. Excitatory postsynaptic potentials and excitatory postsynaptic currents preceded by nerve terminal impulses were recorded as a measure of acetylcholine release from parasympathetic and sympathetic preganglionic fibres following nerve stimulation. The calcium channel antagonists omega-conotoxin GVIA (N type), nifedipine and nimodipine (L type), omega-conotoxin MVIIC and omega-agatoxin IVA (P/Q type), and Ni2+ (R type) had no functional inhibitory effects on synaptic transmission in both submandibular and pelvic ganglia. The potassium-sparing diuretic, amiloride, and its analogue, dimethyl amiloride, produced a reversible and concentration-dependent inhibition of excitatory postsynaptic potential amplitude in the rat submandibular ganglion. The amplitude and frequency of spontaneous excitatory postsynaptic potentials and the sensitivity of the postsynaptic membrane to acetylcholine were unaffected by amiloride. In the rat pelvic ganglion, amiloride produced a concentration-dependent inhibition of excitatory postsynaptic currents without causing any detectable effects on the amplitude or configuration of the nerve terminal impulse. These results indicate that neurotransmitter release from preganglionic parasympathetic and sympathetic nerve terminals is resistant to inhibition by specific calcium channel antagonists of N-, L-, P/Q- and R-type calcium channels. Amiloride acts presynaptically to inhibit evoked transmitter release, but does not prevent action potential propagation in the nerve terminals, suggesting that amiloride may block the pharmacologically distinct calcium channel type(s) on rat preganglionic nerve terminals. (C) 1999 IBRO. Published by Elsevier Science Ltd.
Resumo:
This paper reflects upon our attempts to bring a participatory design approach to design research into interfaces that better support dental practice. The project brought together design researchers, general and specialist dental practitioners, the CEO of a dental software company and, to a limited extent, dental patients. We explored the potential for deployment of speech and gesture technologies in the challenging and authentic context of dental practices. The paper describes the various motivations behind the project, the negotiation of access and the development of the participant relationships as seen from the researchers' perspectives. Conducting participatory design sessions with busy professionals demands preparation, improvisation, and clarity of purpose. The paper describes how we identified what went well and when to shift tactics. The contribution of the paper is in its description of what we learned in bringing participatory design principles to a project that spanned technical research interests, commercial objectives and placing demands upon the time of skilled professionals. Copyright © 2010 ACM, Inc
Resumo:
There is a growing demand for data transmission over digital networks involving mobile terminals. An important class of data required for transmission over mobile terminals is image information such as street maps, floor plans and identikit images. This sort of transmission is of particular interest to the service industries such as the Police force, Fire brigade, medical services and other services. These services cannot be applied directly to mobile terminals because of the limited capacity of the mobile channels and the transmission errors caused by the multipath (Rayleigh) fading. In this research, transmission of line diagram images such as floor plans and street maps, over digital networks involving mobile terminals at transmission rates of 2400 bits/s and 4800 bits/s have been studied. A low bit-rate source encoding technique using geometric codes is found to be suitable to represent line diagram images. In geometric encoding, the amount of data required to represent or store the line diagram images is proportional to the image detail. Thus a simple line diagram image would require a small amount of data. To study the effect of transmission errors due to mobile channels on the transmitted images, error sources (error files), which represent mobile channels under different conditions, have been produced using channel modelling techniques. Satisfactory models of the mobile channel have been obtained when compared to the field test measurements. Subjective performance tests have been carried out to evaluate the quality and usefulness of the received line diagram images under various mobile channel conditions. The effect of mobile transmission errors on the quality of the received images has been determined. To improve the quality of the received images under various mobile channel conditions, forward error correcting codes (FEC) with interleaving and automatic repeat request (ARQ) schemes have been proposed. The performance of the error control codes have been evaluated under various mobile channel conditions. It has been shown that a FEC code with interleaving can be used effectively to improve the quality of the received images under normal and severe mobile channel conditions. Under normal channel conditions, similar results have been obtained when using ARQ schemes. However, under severe mobile channel conditions, the FEC code with interleaving shows better performance.
Resumo:
The use of digital communication systems is increasing very rapidly. This is due to lower system implementation cost compared to analogue transmission and at the same time, the ease with which several types of data sources (data, digitised speech and video, etc.) can be mixed. The emergence of packet broadcast techniques as an efficient type of multiplexing, especially with the use of contention random multiple access protocols, has led to a wide-spread application of these distributed access protocols in local area networks (LANs) and a further extension of them to radio and mobile radio communication applications. In this research, a proposal for a modified version of the distributed access contention protocol which uses the packet broadcast switching technique has been achieved. The carrier sense multiple access with collision avoidance (CSMA/CA) is found to be the most appropriate protocol which has the ability to satisfy equally the operational requirements for local area networks as well as for radio and mobile radio applications. The suggested version of the protocol is designed in a way in which all desirable features of its precedents is maintained. However, all the shortcomings are eliminated and additional features have been added to strengthen its ability to work with radio and mobile radio channels. Operational performance evaluation of the protocol has been carried out for the two types of non-persistent and slotted non-persistent, through mathematical and simulation modelling of the protocol. The results obtained from the two modelling procedures validate the accuracy of both methods, which compares favourably with its precedent protocol CSMA/CD (with collision detection). A further extension of the protocol operation has been suggested to operate with multichannel systems. Two multichannel systems based on the CSMA/CA protocol for medium access are therefore proposed. These are; the dynamic multichannel system, which is based on two types of channel selection, the random choice (RC) and the idle choice (IC), and the sequential multichannel system. The latter has been proposed in order to supress the effect of the hidden terminal, which always represents a major problem with the usage of the contention random multiple access protocols with radio and mobile radio channels. Verification of their operation performance evaluation has been carried out using mathematical modelling for the dynamic system. However, simulation modelling has been chosen for the sequential system. Both systems are found to improve system operation and fault tolerance when compared to single channel operation.
Resumo:
The proliferation of visual display terminals (VDTs) in offices is an international phenomenon. Numerous studies have investigated the health implications which can be categorised into visual problems, symptoms of musculo-skelctal discomfort, or psychosocial effects. The psychosocial effects are broader and there is mixed evidence in this area. The inconsistent results from the studies of VDT work so far undertaken may reflect several methodological shortcomings. In an attempt to overcome these deficiencies and to broaden the model of inter-relationships a model was developed to investigate their interactions and Ihc outputs of job satisfaction, stress and ill health. The study was a two-stage, long-term investigation with measures taken before the VDTs were introduced and the same measures taken 12 months after the 'go-live' date. The research was conducted in four offices of the Department of Social Security. The data were analysed for each individual site and in addition the total data were used in a path analysis model. Significant positive relationships were found at the pre-implementation stage between the musculo-skeletal discomfort, psychosomatic ailments, visual complaints and stress. Job satisfaction was negatively related to visual complaints and musculo-skeletal discomfort. Direct paths were found for age and job level with variety found in the job and age with job satisfaction and a negative relationship with the office environment. The only job characteristic which had a direct path to stress was 'dealing with others'. Similar inter-relationships were found in the post-implementation data. However, in addition attributes of the computer system, such as screen brightness and glare, were related positively with stress and negatively with job satisfaction. The comparison of the data at the two stages found that there had been no significant changes in the users' perceptions of their job characteristics and job satisfaction but there was a small and significant reduction in the stress measure.
Resumo:
This Thesis addresses the problem of automated false-positive free detection of epileptic events by the fusion of information extracted from simultaneously recorded electro-encephalographic (EEG) and the electrocardiographic (ECG) time-series. The approach relies on a biomedical case for the coupling of the Brain and Heart systems through the central autonomic network during temporal lobe epileptic events: neurovegetative manifestations associated with temporal lobe epileptic events consist of alterations to the cardiac rhythm. From a neurophysiological perspective, epileptic episodes are characterised by a loss of complexity of the state of the brain. The description of arrhythmias, from a probabilistic perspective, observed during temporal lobe epileptic events and the description of the complexity of the state of the brain, from an information theory perspective, are integrated in a fusion-of-information framework towards temporal lobe epileptic seizure detection. The main contributions of the Thesis include the introduction of a biomedical case for the coupling of the Brain and Heart systems during temporal lobe epileptic seizures, partially reported in the clinical literature; the investigation of measures for the characterisation of ictal events from the EEG time series towards their integration in a fusion-of-knowledge framework; the probabilistic description of arrhythmias observed during temporal lobe epileptic events towards their integration in a fusion-of-knowledge framework; and the investigation of the different levels of the fusion-of-information architecture at which to perform the combination of information extracted from the EEG and ECG time-series. The performance of the method designed in the Thesis for the false-positive free automated detection of epileptic events achieved a false-positives rate of zero on the dataset of long-term recordings used in the Thesis.
Resumo:
Motion is an important aspect of face perception that has been largely neglected to date. Many of the established findings are based on studies that use static facial images, which do not reflect the unique temporal dynamics available from seeing a moving face. In the present thesis a set of naturalistic dynamic facial emotional expressions was purposely created and used to investigate the neural structures involved in the perception of dynamic facial expressions of emotion, with both functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG). Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend the distributed neural system for face perception (Haxby et al.,2000). Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as inferior occipital gyri and superior temporal sulci, along with coupling between superior temporal sulci and amygdalae, as well as with inferior frontal gyri. MEG and Synthetic Aperture Magnetometry (SAM) were used to examine the spatiotemporal profile of neurophysiological activity within this dynamic face perception network. SAM analysis revealed a number of regions showing differential activation to dynamic versus static faces in the distributed face network, characterised by decreases in cortical oscillatory power in the beta band, which were spatially coincident with those regions that were previously identified with fMRI. These findings support the presence of a distributed network of cortical regions that mediate the perception of dynamic facial expressions, with the fMRI data providing information on the spatial co-ordinates paralleled by the MEG data, which indicate the temporal dynamics within this network. This integrated multimodal approach offers both excellent spatial and temporal resolution, thereby providing an opportunity to explore dynamic brain activity and connectivity during face processing.
Resumo:
The studies in this project have investigated the ongoing neuronal network oscillatory activity found in the sensorimotor cortex using two modalities: magnetoencephalography (MEG) and in vitro slice recordings. The results have established that ongoing sensorimotor oscillations span the mu and beta frequency region both in vitro and in MEG recordings, with distinct frequency profiles for each recorded laminae in vitro, while MI and SI show less difference in humans. In addition, these studies show that connections between MI and SI modulate the ongoing neuronal network activity in these areas. The stimulation studies indicate that specific frequencies of stimulation affect the ongoing activity in the sensorimotor cortex. The continuous theta burst stimulation (cTBS) study demonstrates that cTBS predominantly enhances the power of the local ongoing activity. The stimulation studies in this project show limited comparison between modalities, which is informative of the role of connectivity in these effects. However, independently these studies provide novel information on the mechanisms on sensorimotor oscillatory interaction. The pharmacological studies reveal that GABAergic modulation with zolpidem changes the neuronal oscillatory network activity in both healthy and pathological MI. Zolpidem enhances the power of ongoing oscillatory activity in both sensorimotor laminae and in healthy subjects. In contrast, zolpidem attenuates the “abnormal” beta oscillatory activity in the affected hemisphere in Parkinsonian patients, while restoring the hemispheric beta power ratio and frequency variability and thereby improving motor symptomatology. Finally we show that independent signals from MI laminae can be integrated in silico to resemble the aggregate MEG MI oscillatory signals. This highlights the usefulness of combining these two methods when elucidating neuronal network oscillations in the sensorimotor cortex and any interventions.