919 resultados para multi-environments experiments
Resumo:
Cloud computing has seen an impressive growth in recent years, with virtualization technologies being massively adopted to create IaaS (Infrastructure as a Service) public and private solutions. Today, the interest is shifting towards the PaaS (Platform as a Service) model, which allows developers to abstract from the execution platform and focus only on the functionality. There are several public PaaS offerings available, but currently no private PaaS solution is ready for production environments. To fill this gap a new solution must be developed. In this paper we present a key element for enabling this model: a cloud repository based on the OSGi component model. The repository stores, manages, provisions and resolves the dependencies of PaaS software components and services. This repository can federate with other repositories located in the same or different clouds, both private and public. This way, dependencies can be fulfilled collaboratively, and new business models can be implemented.
Resumo:
Tropospheric phenomena such as clouds and mainly rain cause higher attenuation at Ka-band than at lower frequencies. In this collaborative paper, the main results of four long-term Ka-band propagation campaigns are presented. The experiments are carried out in Ottawa, Canada (satellite Anik F2); Aveiro, Portugal; Madrid, Spain; and Toulouse, France (satellite HotBird 6 in the last three cases) and have been running since 2004 in Aveiro, 2006 in Ottawa and Madrid, and 2008 in Toulouse. After a brief introduction of the experiments, rain rate and excess attenuation results are discussed, first for a common two-year measurement period and later for the whole database available. Seasonal attenuation statistics for Madrid, Ottawa and Aveiro are compared. Finally, fade duration and fade slope statistics derived at three locations are presented and discussed.
Resumo:
An Eulerian multifluid model is used to describe the evolution of an electrospray plume and the flow induced in the surrounding gas by the drag of the electrically charged spray droplets in the space between an injection electrode containing the electrospray source and a collector electrode. The spray is driven by the voltage applied between the two electrodes. Numerical computations and order-of-magnitude estimates for a quiescent gas show that the droplets begin to fly back toward the injection electrode at a certain critical value of the flux of droplets in the spray, which depends very much on the electrical conditions at the injection electrode. As the flux is increased toward its critical value, the electric field induced by the charge of the droplets partially balances the field due to the applied voltage in the vicinity of the injection electrode, leading to a spray that rapidly broadens at a distance from its origin of the order of the stopping distance at which the droplets lose their initial momentum and the effect of their inertia becomes negligible. The axial component of the electric field first changes sign in this region, causing the fly back. The flow induced in the gas significantly changes this picture in the conditions of typical experiments. A gas plume is induced by the drag of the droplets whose entrainment makes the radius of the spray away from the injection electrode smaller than in a quiescent gas, and convects the droplets across the region of negative axial electric field that appears around the origin of the spray when the flux of droplets is increased. This suppresses fly back and allows much higher fluxes to be reached than are possible in a quiescent gas. The limit of large droplet-to-gas mass ratio is discussed. Migration of satellite droplets to the shroud of the spray is reproduced by the Eulerian model, but this process is also affected by the motion of the gas. The gas flow preferentially pushes satellite droplets from the shroud to the core of the spray when the effect of the inertia of the droplets becomes negligible, and thus opposes the well-established electrostatic/inertial mechanism of segregation and may end up concentrating satellite droplets in an intermediate radial region of the spray.
Resumo:
Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing these systems. Different anomaly detectors are combined using the immunological paradigm to optimize reputation system performance in response to evolving security requirements. As an example, the experiments show how a combination of detectors based on unsupervised techniques (self-organizing maps and genetic algorithms) can help to significantly reduce the global response time of the reputation system. The proposed solution offers many benefits: scalability, fast response to adversarial activities, ability to detect unknown attacks, high adaptability, and high ability in detecting and confining attacks. For these reasons, we believe that our solution is capable of coping with the dynamism of ambient intelligence systems and the growing requirements of security demands.
Resumo:
This paper presents a strategy for solving the feature matching problem in calibrated very wide-baseline camera settings. In this kind of settings, perspective distortion, depth discontinuities and occlusion represent enormous challenges. The proposed strategy addresses them by using geometrical information, specifically by exploiting epipolar-constraints. As a result it provides a sparse number of reliable feature points for which 3D position is accurately recovered. Special features known as junctions are used for robust matching. In particular, a strategy for refinement of junction end-point matching is proposed which enhances usual junction-based approaches. This allows to compute cross-correlation between perfectly aligned plane patches in both images, thus yielding better matching results. Evaluation of experimental results proves the effectiveness of the proposed algorithm in very wide-baseline environments.
Resumo:
Wireless teleoperation of field robots for maintenance, inspection and rescue missions is often performed in environments with low wireless connectivity, caused by signal losses from the environment and distance from the wireless transmitters. Various studies from the literature have addressed these problems with time-delay robust control systems and multi-hop wireless relay networks. However, such approaches do not solve the issue of how to present wireless data to the operator to avoid losing control of the robot. Despite the fact that teleoperation for maintenance often already involves haptic devices, no studies look at the possibility of using this existing feedback to aid operators in navigating within areas of variable wireless connectivity. We propose a method to incorporate haptic information into the velocity control of an omnidirectional robot to augment the operators perception of wireless signal strength in the remote environment. In this paper we introduce a mapping between wireless signal strength from multiple receivers to the force feedback of a 6 Degree of Freedom haptic master and evaluate the proposed approach using experimental data and randomly generated wireless maps
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.
Resumo:
The complexity of planning a wireless sensor network is dependent on the aspects of optimization and on the application requirements. Even though Murphy's Law is applied everywhere in reality, a good planning algorithm will assist the designers to be aware of the short plates of their design and to improve them before the problems being exposed at the real deployment. A 3D multi-objective planning algorithm is proposed in this paper to provide solutions on the locations of nodes and their properties. It employs a developed ray-tracing scheme for sensing signal and radio propagation modelling. Therefore it is sensitive to the obstacles and makes the models of sensing coverage and link quality more practical compared with other heuristics that use ideal unit-disk models. The proposed algorithm aims at reaching an overall optimization on hardware cost, coverage, link quality and lifetime. Thus each of those metrics are modelled and normalized to compose a desirability function. Evolutionary algorithm is designed to efficiently tackle this NP-hard multi-objective optimization problem. The proposed algorithm is applicable for both indoor and outdoor 3D scenarios. Different parameters that affect the performance are analyzed through extensive experiments; two state-of-the-art algorithms are rebuilt and tested with the same configuration as that of the proposed algorithm. The results indicate that the proposed algorithm converges efficiently within 600 iterations and performs better than the compared heuristics.
Resumo:
Este trabajo es una contribución a los sistemas fotovoltaicos (FV) con seguimiento distribuido del punto de máxima potencia (DMPPT), una topología que se caracteriza porque lleva a cabo el MPPT a nivel de módulo, al contrario de las topologías más tradicionales que llevan a cabo el MPPT para un número más elevado de módulos, pudiendo ser hasta cientos de módulos. Las dos tecnologías DMPPT que existen en el mercado son conocidos como microinversores y optimizadores de potencia, y ofrecen ciertas ventajas sobre sistemas de MPPT central como: mayor producción en situaciones de mismatch, monitorización individual de cada módulo, flexibilidad de diseño, mayor seguridad del sistema, etc. Aunque los sistemas DMPPT no están limitados a los entornos urbanos, se ha enfatizado en el título ya que es su mercado natural, siendo difícil una justificación de su sobrecoste en grandes huertas solares en suelo. Desde el año 2010 el mercado de estos sistemas ha incrementado notablemente y sigue creciendo de una forma continuada. Sin embargo, todavía falta un conocimiento profundo de cómo funcionan estos sistemas, especialmente en el caso de los optimizadores de potencia, de las ganancias energéticas esperables en condiciones de mismatch y de las posibilidades avanzadas de diagnóstico de fallos. El principal objetivo de esta tesis es presentar un estudio completo de cómo funcionan los sistemas DMPPT, sus límites y sus ventajas, así como experimentos varios que verifican la teoría y el desarrollo de herramientas para valorar las ventajas de utilizar DMPPT en cada instalación. Las ecuaciones que modelan el funcionamiento de los sistemas FVs con optimizadores de potencia se han desarrollado y utilizado para resaltar los límites de los mismos a la hora de resolver ciertas situaciones de mismatch. Se presenta un estudio profundo sobre el efecto de las sombras en los sistemas FVs: en la curva I-V y en los algoritmos MPPT. Se han llevado a cabo experimentos sobre el funcionamiento de los algoritmos MPPT en situaciones de sombreado, señalando su ineficiencia en estas situaciones. Un análisis de la ventaja del uso de DMPPT frente a los puntos calientes es presentado y verificado. También se presenta un análisis sobre las posibles ganancias en potencia y energía con el uso de DMPPT en condiciones de sombreado y este también es verificado experimentalmente, así como un breve estudio de su viabilidad económica. Para ayudar a llevar a cabo todos los análisis y experimentos descritos previamente se han desarrollado una serie de herramientas software. Una siendo un programa en LabView para controlar un simulador solar y almacenar las medidas. También se ha desarrollado un programa que simula curvas I-V de módulos y generador FVs afectados por sombras y este se ha verificado experimentalmente. Este mismo programa se ha utilizado para desarrollar un programa todavía más completo que estima las pérdidas anuales y las ganancias obtenidas con DMPPT en instalaciones FVs afectadas por sombras. Finalmente, se han desarrollado y verificado unos algoritmos para diagnosticar fallos en sistemas FVs con DMPPT. Esta herramienta puede diagnosticar los siguientes fallos: sombras debido a objetos fijos (con estimación de la distancia al objeto), suciedad localizada, suciedad general, posible punto caliente, degradación de módulos y pérdidas en el cableado de DC. Además, alerta al usuario de las pérdidas producidas por cada fallo y no requiere del uso de sensores de irradiancia y temperatura. ABSTRACT This work is a contribution to photovoltaic (PV) systems with distributed maximum power point tracking (DMPPT), a system topology characterized by performing the MPPT at module level, instead of the more traditional topologies which perform MPPT for a larger number of modules. The two DMPPT technologies available at the moment are known as microinverters and power optimizers, also known as module level power electronics (MLPE), and they provide certain advantages over central MPPT systems like: higher energy production in mismatch situations, monitoring of each individual module, system design flexibility, higher system safety, etc. Although DMPPT is not limited to urban environments, it has been emphasized in the title as it is their natural market, since in large ground-mounted PV plants the extra cost is difficult to justify. Since 2010 MLPE have increased their market share steadily and continuing to grow steadily. However, there still lacks a profound understanding of how they work, especially in the case of power optimizers, the achievable energy gains with their use and the possibilities in failure diagnosis. The main objective of this thesis is to provide a complete understanding of DMPPT technologies: how they function, their limitations and their advantages. A series of equations used to model PV arrays with power optimizers have been derived and used to point out limitations in solving certain mismatch situation. Because one of the most emphasized benefits of DMPPT is their ability to mitigate shading losses, an extensive study on the effects of shadows on PV systems is presented; both on the I-V curve and on MPPT algorithms. Experimental tests have been performed on the MPPT algorithms of central inverters and MLPE, highlighting their inefficiency in I-V curves with local maxima. An analysis of the possible mitigation of hot-spots with DMPPT is discussed and experimentally verified. And a theoretical analysis of the possible power and energy gains is presented as well as experiments in real PV systems. A short economic analysis of the benefits of DMPPT has also been performed. In order to aide in the previous task, a program which simulates I-V curves under shaded conditions has been developed and experimentally verified. This same program has been used to develop a software tool especially designed for PV systems affected by shading, which estimates the losses due to shading and the energy gains obtained with DMPPT. Finally, a set of algorithms for diagnosing system faults in PV systems with DMPPT has been developed and experimentally verified. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity and it does not require the use of irradiance or temperature sensors.
Resumo:
The primary hypothesis stated by this paper is that the use of social choice theory in Ambient Intelligence systems can improve significantly users satisfaction when accessing shared resources. A research methodology based on agent based social simulations is employed to support this hypothesis and to evaluate these benefits. The result is a six-fold contribution summarized as follows. Firstly, several considerable differences between this application case and the most prominent social choice application, political elections, have been found and described. Secondly, given these differences, a number of metrics to evaluate different voting systems in this scope have been proposed and formalized. Thirdly, given the presented application and the metrics proposed, the performance of a number of well known electoral systems is compared. Fourthly, as a result of the performance study, a novel voting algorithm capable of obtaining the best balance between the metrics reviewed is introduced. Fifthly, to improve the social welfare in the experiments, the voting methods are combined with cluster analysis techniques. Finally, the article is complemented by a free and open-source tool, VoteSim, which ensures not only the reproducibility of the experimental results presented, but also allows the interested reader to adapt the case study presented to different environments.
Resumo:
Este trabajo es una contribución a los sistemas fotovoltaicos (FV) con seguimiento distribuido del punto de máxima potencia (DMPPT), una topología que se caracteriza porque lleva a cabo el MPPT a nivel de módulo, al contrario de las topologías más tradicionales que llevan a cabo el MPPT para un número más elevado de módulos, pudiendo ser hasta cientos de módulos. Las dos tecnologías DMPPT que existen en el mercado son conocidos como microinversores y optimizadores de potencia, y ofrecen ciertas ventajas sobre sistemas de MPPT central como: mayor producción en situaciones de mismatch, monitorización individual de cada módulo, flexibilidad de diseño, mayor seguridad del sistema, etc. Aunque los sistemas DMPPT no están limitados a los entornos urbanos, se ha enfatizado en el título ya que es su mercado natural, siendo difícil una justificación de su sobrecoste en grandes huertas solares en suelo. Desde el año 2010 el mercado de estos sistemas ha incrementado notablemente y sigue creciendo de una forma continuada. Sin embargo, todavía falta un conocimiento profundo de cómo funcionan estos sistemas, especialmente en el caso de los optimizadores de potencia, de las ganancias energéticas esperables en condiciones de mismatch y de las posibilidades avanzadas de diagnóstico de fallos. El principal objetivo de esta tesis es presentar un estudio completo de cómo funcionan los sistemas DMPPT, sus límites y sus ventajas, así como experimentos varios que verifican la teoría y el desarrollo de herramientas para valorar las ventajas de utilizar DMPPT en cada instalación. Las ecuaciones que modelan el funcionamiento de los sistemas FVs con optimizadores de potencia se han desarrollado y utilizado para resaltar los límites de los mismos a la hora de resolver ciertas situaciones de mismatch. Se presenta un estudio profundo sobre el efecto de las sombras en los sistemas FVs: en la curva I-V y en los algoritmos MPPT. Se han llevado a cabo experimentos sobre el funcionamiento de los algoritmos MPPT en situaciones de sombreado, señalando su ineficiencia en estas situaciones. Un análisis de la ventaja del uso de DMPPT frente a los puntos calientes es presentado y verificado. También se presenta un análisis sobre las posibles ganancias en potencia y energía con el uso de DMPPT en condiciones de sombreado y este también es verificado experimentalmente, así como un breve estudio de su viabilidad económica. Para ayudar a llevar a cabo todos los análisis y experimentos descritos previamente se han desarrollado una serie de herramientas software. Una siendo un programa en LabView para controlar un simulador solar y almacenar las medidas. También se ha desarrollado un programa que simula curvas I-V de módulos y generador FVs afectados por sombras y este se ha verificado experimentalmente. Este mismo programa se ha utilizado para desarrollar un programa todavía más completo que estima las pérdidas anuales y las ganancias obtenidas con DMPPT en instalaciones FVs afectadas por sombras. Finalmente, se han desarrollado y verificado unos algoritmos para diagnosticar fallos en sistemas FVs con DMPPT. Esta herramienta puede diagnosticar los siguientes fallos: sombras debido a objetos fijos (con estimación de la distancia al objeto), suciedad localizada, suciedad general, posible punto caliente, degradación de módulos y pérdidas en el cableado de DC. Además, alerta al usuario de las pérdidas producidas por cada fallo y no requiere del uso de sensores de irradiancia y temperatura. ABSTRACT This work is a contribution to photovoltaic (PV) systems with distributed maximum power point tracking (DMPPT), a system topology characterized by performing the MPPT at module level, instead of the more traditional topologies which perform MPPT for a larger number of modules. The two DMPPT technologies available at the moment are known as microinverters and power optimizers, also known as module level power electronics (MLPE), and they provide certain advantages over central MPPT systems like: higher energy production in mismatch situations, monitoring of each individual module, system design flexibility, higher system safety, etc. Although DMPPT is not limited to urban environments, it has been emphasized in the title as it is their natural market, since in large ground-mounted PV plants the extra cost is difficult to justify. Since 2010 MLPE have increased their market share steadily and continuing to grow steadily. However, there still lacks a profound understanding of how they work, especially in the case of power optimizers, the achievable energy gains with their use and the possibilities in failure diagnosis. The main objective of this thesis is to provide a complete understanding of DMPPT technologies: how they function, their limitations and their advantages. A series of equations used to model PV arrays with power optimizers have been derived and used to point out limitations in solving certain mismatch situation. Because one of the most emphasized benefits of DMPPT is their ability to mitigate shading losses, an extensive study on the effects of shadows on PV systems is presented; both on the I-V curve and on MPPT algorithms. Experimental tests have been performed on the MPPT algorithms of central inverters and MLPE, highlighting their inefficiency in I-V curves with local maxima. An analysis of the possible mitigation of hot-spots with DMPPT is discussed and experimentally verified. And a theoretical analysis of the possible power and energy gains is presented as well as experiments in real PV systems. A short economic analysis of the benefits of DMPPT has also been performed. In order to aide in the previous task, a program which simulates I-V curves under shaded conditions has been developed and experimentally verified. This same program has been used to develop a software tool especially designed for PV systems affected by shading, which estimates the losses due to shading and the energy gains obtained with DMPPT. Finally, a set of algorithms for diagnosing system faults in PV systems with DMPPT has been developed and experimentally verified. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity and it does not require the use of irradiance or temperature sensors.
Resumo:
The impact of the Parkinson's disease and its treatment on the patients' health-related quality of life can be estimated either by means of generic measures such as the european quality of Life-5 Dimensions (EQ-5D) or specific measures such as the 8-item Parkinson's disease questionnaire (PDQ-8). In clinical studies, PDQ-8 could be used in detriment of EQ-5D due to the lack of resources, time or clinical interest in generic measures. Nevertheless, PDQ-8 cannot be applied in cost-effectiveness analyses which require generic measures and quantitative utility scores, such as EQ-5D. To deal with this problem, a commonly used solution is the prediction of EQ-5D from PDQ-8. In this paper, we propose a new probabilistic method to predict EQ-5D from PDQ-8 using multi-dimensional Bayesian network classifiers. Our approach is evaluated using five-fold cross-validation experiments carried out on a Parkinson's data set containing 488 patients, and is compared with two additional Bayesian network-based approaches, two commonly used mapping methods namely, ordinary least squares and censored least absolute deviations, and a deterministic model. Experimental results are promising in terms of predictive performance as well as the identification of dependence relationships among EQ-5D and PDQ-8 items that the mapping approaches are unable to detect
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.
Resumo:
Semantic interoperability is essential to facilitate efficient collaboration in heterogeneous multi-site healthcare environments. The deployment of a semantic interoperability solution has the potential to enable a wide range of informatics supported applications in clinical care and research both within as ingle healthcare organization and in a network of organizations. At the same time, building and deploying a semantic interoperability solution may require significant effort to carryout data transformation and to harmonize the semantics of the information in the different systems. Our approach to semantic interoperability leverages existing healthcare standards and ontologies, focusing first on specific clinical domains and key applications, and gradually expanding the solution when needed. An important objective of this work is to create a semantic link between clinical research and care environments to enable applications such as streamlining the execution of multi-centric clinical trials, including the identification of eligible patients for the trials. This paper presents an analysis of the suitability of several widely-used medical ontologies in the clinical domain: SNOMED-CT, LOINC, MedDRA, to capture the semantics of the clinical trial eligibility criteria, of the clinical trial data (e.g., Clinical Report Forms), and of the corresponding patient record data that would enable the automatic identification of eligible patients. Next to the coverage provided by the ontologies we evaluate and compare the sizes of the sets of relevant concepts and their relative frequency to estimate the cost of data transformation, of building the necessary semantic mappings, and of extending the solution to new domains. This analysis shows that our approach is both feasible and scalable.
Resumo:
La familia de algoritmos de Boosting son un tipo de técnicas de clasificación y regresión que han demostrado ser muy eficaces en problemas de Visión Computacional. Tal es el caso de los problemas de detección, de seguimiento o bien de reconocimiento de caras, personas, objetos deformables y acciones. El primer y más popular algoritmo de Boosting, AdaBoost, fue concebido para problemas binarios. Desde entonces, muchas han sido las propuestas que han aparecido con objeto de trasladarlo a otros dominios más generales: multiclase, multilabel, con costes, etc. Nuestro interés se centra en extender AdaBoost al terreno de la clasificación multiclase, considerándolo como un primer paso para posteriores ampliaciones. En la presente tesis proponemos dos algoritmos de Boosting para problemas multiclase basados en nuevas derivaciones del concepto margen. El primero de ellos, PIBoost, está concebido para abordar el problema descomponiéndolo en subproblemas binarios. Por un lado, usamos una codificación vectorial para representar etiquetas y, por otro, utilizamos la función de pérdida exponencial multiclase para evaluar las respuestas. Esta codificación produce un conjunto de valores margen que conllevan un rango de penalizaciones en caso de fallo y recompensas en caso de acierto. La optimización iterativa del modelo genera un proceso de Boosting asimétrico cuyos costes dependen del número de etiquetas separadas por cada clasificador débil. De este modo nuestro algoritmo de Boosting tiene en cuenta el desbalanceo debido a las clases a la hora de construir el clasificador. El resultado es un método bien fundamentado que extiende de manera canónica al AdaBoost original. El segundo algoritmo propuesto, BAdaCost, está concebido para problemas multiclase dotados de una matriz de costes. Motivados por los escasos trabajos dedicados a generalizar AdaBoost al terreno multiclase con costes, hemos propuesto un nuevo concepto de margen que, a su vez, permite derivar una función de pérdida adecuada para evaluar costes. Consideramos nuestro algoritmo como la extensión más canónica de AdaBoost para este tipo de problemas, ya que generaliza a los algoritmos SAMME, Cost-Sensitive AdaBoost y PIBoost. Por otro lado, sugerimos un simple procedimiento para calcular matrices de coste adecuadas para mejorar el rendimiento de Boosting a la hora de abordar problemas estándar y problemas con datos desbalanceados. Una serie de experimentos nos sirven para demostrar la efectividad de ambos métodos frente a otros conocidos algoritmos de Boosting multiclase en sus respectivas áreas. En dichos experimentos se usan bases de datos de referencia en el área de Machine Learning, en primer lugar para minimizar errores y en segundo lugar para minimizar costes. Además, hemos podido aplicar BAdaCost con éxito a un proceso de segmentación, un caso particular de problema con datos desbalanceados. Concluimos justificando el horizonte de futuro que encierra el marco de trabajo que presentamos, tanto por su aplicabilidad como por su flexibilidad teórica. Abstract The family of Boosting algorithms represents a type of classification and regression approach that has shown to be very effective in Computer Vision problems. Such is the case of detection, tracking and recognition of faces, people, deformable objects and actions. The first and most popular algorithm, AdaBoost, was introduced in the context of binary classification. Since then, many works have been proposed to extend it to the more general multi-class, multi-label, costsensitive, etc... domains. Our interest is centered in extending AdaBoost to two problems in the multi-class field, considering it a first step for upcoming generalizations. In this dissertation we propose two Boosting algorithms for multi-class classification based on new generalizations of the concept of margin. The first of them, PIBoost, is conceived to tackle the multi-class problem by solving many binary sub-problems. We use a vectorial codification to represent class labels and a multi-class exponential loss function to evaluate classifier responses. This representation produces a set of margin values that provide a range of penalties for failures and rewards for successes. The stagewise optimization of this model introduces an asymmetric Boosting procedure whose costs depend on the number of classes separated by each weak-learner. In this way the Boosting procedure takes into account class imbalances when building the ensemble. The resulting algorithm is a well grounded method that canonically extends the original AdaBoost. The second algorithm proposed, BAdaCost, is conceived for multi-class problems endowed with a cost matrix. Motivated by the few cost-sensitive extensions of AdaBoost to the multi-class field, we propose a new margin that, in turn, yields a new loss function appropriate for evaluating costs. Since BAdaCost generalizes SAMME, Cost-Sensitive AdaBoost and PIBoost algorithms, we consider our algorithm as a canonical extension of AdaBoost to this kind of problems. We additionally suggest a simple procedure to compute cost matrices that improve the performance of Boosting in standard and unbalanced problems. A set of experiments is carried out to demonstrate the effectiveness of both methods against other relevant Boosting algorithms in their respective areas. In the experiments we resort to benchmark data sets used in the Machine Learning community, firstly for minimizing classification errors and secondly for minimizing costs. In addition, we successfully applied BAdaCost to a segmentation task, a particular problem in presence of imbalanced data. We conclude the thesis justifying the horizon of future improvements encompassed in our framework, due to its applicability and theoretical flexibility.