894 resultados para modulating agents
Resumo:
It is now well accepted that cellular responses to materials in a biological medium reflect greatly the adsorbed biomolecular layer, rather than the material itself. Here, we study by molecular dynamics simulations the competitive protein adsorption on a surface (Vroman effect), i.e. the non-monotonic behavior of the amount of protein adsorbed on a surface in contact with plasma as functions of contact time and plasma concentration. We find a complex behavior, with regimes during which small and large proteins are not necessarily competing between them, but are both competing with others in solution ("cooperative" adsorption). We show how the Vroman effect can be understood, controlled and inverted.
Resumo:
Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Here, we report novel cationic lysine-based surfactants (hydrochloride salts of N¿- and N¿-acyl lysine methyl ester) that differ in the position of the positive charge and the length of the alkyl chain. Amino acid-based surfactants could be promising novel biomaterials in drug delivery systems, given their biocompatible properties and low cytotoxic potential. We examined their ability to disrupt the cell membrane in a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model of endosomal membranes. Furthermore, we addressed the mechanism of surfactant-mediated membrane destabilization, including the effects of each surfactant on erythrocyte morphology as a function of pH. We found that only surfactants with the positive charge on the ¿-amino group of lysine showed pH-sensitive hemolytic activity and improved kinetics within the endosomal pH range, indicating that the positive charge position is critical for pH-responsive behavior. Moreover, our results showed that an increase in the alkyl chain length from 14 to 16 carbon atoms was associated with a lower ability to disrupt cell membranes. Knowledge on modulating surfactant-lipid bilayer interactions may help us to develop more efficient biocompatible amino acid-based drug delivery devices.
Resumo:
OBJECTIVES: To assess the in vitro susceptibility of Actinobaculum schaalii to 12 antimicrobial agents as well as to dissect the genetic basis of fluoroquinolone resistance. METHODS: Forty-eight human clinical isolates of A. schaalii collected in Switzerland and France were studied. Each isolate was identified by 16S rRNA sequencing. MICs of amoxicillin, ceftriaxone, gentamicin, vancomycin, clindamycin, linezolid, ciprofloxacin, levofloxacin, moxifloxacin, co-trimoxazole, nitrofurantoin and metronidazole were determined using the Etest method. Interpretation of results was made according to EUCAST clinical breakpoints. The quinolone-resistance-determining regions (QRDRs) of gyrA and parC genes were also identified and sequence analysis was performed for all 48 strains. RESULTS: All isolates were susceptible to amoxicillin, ceftriaxone, gentamicin, clindamycin (except three), vancomycin, linezolid and nitrofurantoin, whereas 100% and 85% were resistant to ciprofloxacin/metronidazole and co-trimoxazole, respectively. Greater than or equal to 90% of isolates were susceptible to the other tested fluoroquinolones, and only one strain was highly resistant to levofloxacin (MIC ?32 mg/L) and moxifloxacin (MIC 8 mg/L). All isolates that were susceptible or low-level resistant to levofloxacin/moxifloxacin (n?=?47) showed identical GyrA and ParC amino acid QRDR sequences. In contrast, the isolate exhibiting high-level resistance to levofloxacin and moxifloxacin possessed a unique mutation in GyrA, Ala83Val (Escherichia coli numbering), whereas no mutation was present in ParC. CONCLUSIONS: When an infection caused by A. schaalii is suspected, there is a risk of clinical failure by treating with ciprofloxacin or co-trimoxazole, and ?-lactams should be preferred. In addition, acquired resistance to fluoroquinolones more active against Gram-positive bacteria is possible.
Resumo:
PURPOSE: To present in vitro loading and release characteristics of idarubicin with ONCOZENE (CeloNova BioSciences, Inc, San Antonio, Texas) drug-eluting embolic (DEE) agents and in vivo pharmacokinetics data after transarterial chemoembolization with idarubicin-loaded ONCOZENE DEE agents in patients with hepatocellular carcinoma. MATERIALS AND METHODS: Loading efficacy of idarubicin with ONCOZENE DEE agents 100 µm and DC Bead (Biocompatibles UK Ltd, Farnham, United Kingdom) DEE agents 100-300 µm was monitored at 10, 20, and 30 minutes loading time by high-pressure liquid chromatography. A T-apparatus was used to monitor the release of idarubicin from the two types of DEE agents over 12 hours. Clinical and 24-hour pharmacokinetics data were recorded after transarterial chemoembolization with idarubicin-loaded ONCOZENE DEE agents in four patients with unresectable hepatocellular carcinoma. RESULTS: Idarubicin loading in ONCOZENE DEE agents was > 99% at 10 minutes. Time to reach 75% of the release plateau level was 37 minutes ± 6 for DC Bead DEE agents and 170 minutes ± 19 for ONCOZENE DEE agents both loaded with idarubicin 10 mg/mL. After transarterial chemoembolization with idarubicin-loaded ONCOZENE DEE agents, three partial responses and one complete response were observed with only two asymptomatic grade 3 biologic adverse events. Median time to maximum concentration for idarubicin in patients was 10 minutes, and mean maximum concentration was 4.9 µg/L ± 1.7. Mean area under the concentration-time curve from 0-24 hours was equal to 29.5 µg.h/L ± 20.5. CONCLUSIONS: ONCOZENE DEE agents show promising results with very fast loading ability, a favorable in vivo pharmacokinetics profile with a sustained release of idarubicin during the first 24 hours, and encouraging safety and responses. Histopathologic and clinical studies are needed to evaluate idarubicin release around the DEE agents in tumor tissue and to confirm safety and efficacy.
Resumo:
MEK kinase 1 (MEKK1) is a 196-kDa enzyme that is involved in the regulation of the c-Jun N-terminal kinase (JNK) pathway and apoptosis. In cells exposed to genotoxic agents including etoposide and cytosine arabinoside, MEKK1 is cleaved at Asp874 by caspases. The cleaved kinase domain of MEKK1, itself, stimulates caspase activity leading to apoptosis. Kinase-inactive MEKK1 expressed in HEK293 cells effectively blocks genotoxin-induced apoptosis. Treatment of cells with taxol, a microtubule stabilizing agent, did not induce MEKK1 cleavage in cells, and kinase-inactive MEKK1 expression failed to block taxol-induced apoptosis. MEKK1 became activated in HEK293 cells exposed to taxol, but in contrast to etoposide-treatment, taxol failed to increase JNK activity. Taxol treatment of cells, therefore, dissociates MEKK1 activation from the regulation of the JNK pathway. Overexpression of anti-apoptotic Bcl2 blocked MEKK1 and taxol-induced apoptosis but did not block the caspase-dependent cleavage of MEKK1 in response to etoposide. This indicates Bcl2 inhibition of apoptosis is, therefore, downstream of caspase-dependent MEKK1 cleavage. The results define the involvement of MEKK1 in the induction of apoptosis by genotoxins but not microtubule altering drugs.
Resumo:
Structural repairs of bridges piers and abutments require patching concrete or mortar be placed at various thickness. Whether concrete or mortar is use depends upon the depth of the patch to be made. In some instances, the use of a liquid bonding agent has been specified in the mixes as well as in a grout scrubbed onto the surface to be patched prior to the mix placement. Most of the bonding agents presently approved by the Iowa D.O.T. are polyvinyl acetate (PVA) or some type of latex. In a general discussion with a consultant about various types of bridge repair materials and processes, the subject of bonding agents was discussed at some length. It was the opinion of the consultant that the usage of polyvinyl acetates should be discontinued because of possible deterioration of this material with time. Some of these materials apparently re-emulsify in a high - moisture environment causing serious patch deterioration. As a result of this information, a study was initiated to determine the durability of these materials.
Resumo:
The nuclear receptor PPAR alpha is a key regulatory transcription factor in lipid homeostasis, some liver detoxification processes and the control of inflammation. Recent findings suggest that many hypolipidemic drugs and anti-inflammatory agents can potentially act by binding to PPAR alpha and inducing its activity. Here, we identify some structure-function relationships in PPAR alpha, by using the species-specific responsiveness to the two hypolipidemic agents, Wy 14,643 and 5,8,11,14-eicosatetraynoic acid (ETYA). We first show that the species-specific differences are mediated primarily via the ligand binding domain of the receptor and that these two drugs are indeed ligands of PPAR alpha. By mutagenesis analyses we identify amino acid residues in the ligand binding domains of Xenopus, mouse and human PPAR alpha, that confer preferential responsiveness to ETYA and Wy 14,643. These findings will aid in the development of new synthetic PPAR alpha ligands as effective therapeutics for lipid-related diseases and inflammatory disorders.
Resumo:
BACKGROUND: Biological agents (BA) have recently completed the treatment options in auto-inflammatory diseases (AID) in children with the aim to improve the outcome. TNF-α blocking agents have been the first BA successfully used in children. However, other biological agents targeting cytokines including IL-1 and IL-6 have been shown to be effective (anti-IL-1/6), especially in AID like systemiconset juvenile arthritis (SoJIA) or cryopyrine-associated periodic syndrome (CAPS). In Switzerland, Etanercept has been approved for the treatment of JIA since 2000 and Canakinumab for the treatment of paediatric CAPS since 2009.OBJECTIVES: Evaluation of the use of biological agents in AID in Western Switzerland.METHODS: We selected all patients with AID seen in the Réseau Romand de Rhumatologie Pédiatrique (Lausanne, Geneva, Aigle, Sion, and Neuchâtel) who were treated with the following BA: anti-TNF-α (Etanercept, Infliximab, Adalimumab) and Abatacept, and anti-IL-1/6 (Anakinra, Canakinumab, Tocilizumab). We looked at minor and major adverse events and the activity of the disease before and after treatment with BA and with special regards on anti-IL-1/6.RESULTS: Among 921 children and adolescents followed between 2004 and 2010, we selected 85 patients with AID (PFAPA: 40, FMF: 6, HyperIgD: 1, CAPS: 3, SoJIA: 34). Only patients with CAPS and SoJIA were treated with BA. They had a mean age of 9 years (3-22) and F: M ratio of 1.6:1. 7 patients were treated with one BA, 6 patients with 2 different BAs and 3 with 3 BAs. 3 patients with CAPS were treated with anti-IL-1 and responded very well. 13 SoJIA patients were treated with BA (anti-TNF-α: 8, Abatacept: 1, anti-IL-1/6: 8). 4 patients treated by anti-TNF-α were switched to anti-IL-1/6 because of lack of response to treatment (cf Table 1). We did not have any serious adverse events and no serious infections.CONCLUSIONS: Patients with SoJIA and CAPS clearly benefit from treatment with BA. General tolerance was good. In the CAPS group the response to IL-1 was excellent. In SoJIA, 3/4 patients, switched from anti-TNF-α to anti-IL-1/6 for lack of therapeutic response, did not respond well to the second medication. These patientsseem to represent a population relatively resistant to treatment with BA. Due to the low number of patients in our cohort, the response to BA in SoJIA patients non-responder to anti- TNF-α agents should be further studied.
Resumo:
BACKGROUND AND PURPOSE: The major drug-metabolizing enzymes for the oxidation of oxycodone are CYP2D6 and CYP3A. A high interindividual variability in the activity of these enzymes because of genetic polymorphisms and/or drug-drug interactions is well established. The possible role of an active metabolite in the pharmacodynamics of oxycodone has been questioned and the importance of CYP3A-mediated effects on the pharmacokinetics and pharmacodynamics of oxycodone has been poorly explored. EXPERIMENTAL APPROACH: We conducted a randomized crossover (five arms) double-blind placebo-controlled study in 10 healthy volunteers genotyped for CYP2D6. Oral oxycodone (0.2 mg x kg(-1)) was given alone or after inhibition of CYP2D6 (with quinidine) and/or of CYP3A (with ketoconazole). Experimental pain (cold pressor test, electrical stimulation, thermode), pupil size, psychomotor effects and toxicity were assessed. KEY RESULTS: CYP2D6 activity was correlated with oxycodone experimental pain assessment. CYP2D6 ultra-rapid metabolizers experienced increased pharmacodynamic effects, whereas cold pressor test and pupil size were unchanged in CYP2D6 poor metabolizers, relative to extensive metabolizers. CYP2D6 blockade reduced subjective pain threshold (SPT) for oxycodone by 30% and the response was similar to placebo. CYP3A4 blockade had a major effect on all pharmacodynamic assessments and SPT increased by 15%. Oxymorphone C(max) was correlated with SPT assessment (rho(S)= 0.7) and the only independent positive predictor of SPT. Side-effects were observed after CYP3A4 blockade and/or in CYP2D6 ultra-rapid metabolizers. CONCLUSIONS AND IMPLICATIONS: The modulation of CYP2D6 and CYP3A activities had clear effects on oxycodone pharmacodynamics and these effects were dependent on CYP2D6 genetic polymorphism.
Resumo:
The relaxivity of commercially available gadolinium (Gd)-based contrast agents was studied for X-nuclei resonances with long intrinsic relaxation times ranging from 6 s to several hundred seconds. Omniscan in pure 13C formic acid had a relaxivity of 2.9 mM(-1) s(-1), whereas its relaxivity on glutamate C1 and C5 in aqueous solution was approximately 0.5 mM(-1) s(-1). Both relaxivities allow the preparation of solutions with a predetermined short T1 and suggest that in vitro substantial sensitivity gains in their measurement can be achieved. 6Li has a long intrinsic relaxation time, on the order of several minutes, which was strongly affected by the contrast agents. Relaxivity ranged from approximately 0.1 mM(-1) s(-1) for Omniscan to 0.3 for Magnevist, whereas the relaxivity of Gd-DOTP was at 11 mM(-1) s(-1), which is two orders of magnitude higher. Overall, these experiments suggest that the presence of 0.1- to 10-microM contrast agents should be detectable, provided sufficient sensitivity is available, such as that afforded by hyperpolarization, recently introduced to in vivo imaging.
Resumo:
Dopaminergic, serotonergic and noradrenergic nuclei form the trimonoamine modulating system (TMMS). This system modulates emotional/motivational activities mediated by the limbic circuitry, where glutamate is the major excitatory neurotransmitter. Two main concepts are the basis of this review. First, since 1950 and the discovery of the antipsychotic activity of the dopamine D2 receptor antagonist chlorpromazine, it appears that drugs that can modulate the TMMS possess therapeutic psychiatric properties. Second, the concept of glutamate/trimonoamine imbalance in the cortico-striato-thalamo-cortical loop that has been so successful in explaining the pathophysiology of Parkinson disease has been applied in the pathophysiology of schizophrenia. This review will focus on the complex interactions between the fast synaptic glutamatergic transmission and the TMMS in specific parts of the limbic lobe and we will try to link these interactions to some psychiatric disorders, mainly depression, schizophrenia and drug addiction.
Resumo:
BACKGROUND & AIM: Immune-modulating nutritional formula containing arginine, omega-3 fatty acids and nucleotides has been demonstrated to decrease complications and length of stay in surgical patients. This study aims at assessing the impact of immune-modulating formula on hospital costs in gastrointestinal cancer surgical patients in Switzerland. METHOD: Based on a previously published meta-analysis, the relative risks of overall and infectious complications with immune-modulating versus standard nutrition formula were computed. Swiss hospital costs of patients undergoing gastrointestinal cancer surgery were retrieved. A method was developed to compute the patients' severity level, not taking into account the complications from the surgery. Incremental costs of complications were computed for both treatment groups, and sensitivity analyses were carried out. RESULTS: Relative risk of complications with pre-, peri- and post-operative use of immune-modulating formula was 0.69 (95%CI 0.58-0.83), 0.62 (95%CI 0.53-0.73) and 0.73 (95%CI 0.35-0.96) respectively. The estimated average contribution of complications to the cost of stay was CHF 14,949 (euro10,901) per patient (95%CI 10,712-19,186), independently of case's severity. Based on this cost, immune-modulating nutritional support decreased costs of hospital stay by CHF 1638 to CHF 2488 per patient (euro1195-euro1814). Net hospital savings were present for baseline complications rates as low as 5%. CONCLUSION: Immune-modulating nutritional solution is a cost-saving intervention in gastrointestinal cancer patients. The additional cost of immune-modulating formula are more than offset by savings associated with decreased treatment of complications.
Resumo:
BACKGROUND: Infective endocarditis (IE) mostly occurs after spontaneous low-grade bacteremia. Thus, IE cannot be prevented by circumstantial antibiotic prophylaxis. Platelet activation following bacterial-fibrinogen interaction or thrombin-mediated fibrinogen-fibrin polymerization is a critical step in vegetation formation. We tested the efficacy of antiplatelet and antithrombin to prevent experimental IE. METHODS: A rat model of experimental IE following prolonged low-grade bacteremia mimicking smoldering bacteremia in humans was used. Prophylaxis with antiplatelets (aspirin, ticlopidine [alone or in combination], eptifibatide, or abciximab) or anticoagulants (antithrombin dabigatran etexilate or anti-vitamin K acenocoumarol) was started 2 days before inoculation with Streptococcus gordonii or Staphylococcus aureus. Valve infection was assessed 24 hours later. RESULTS: Aspirin plus ticlopidine, as well as abciximab, protected 45%-88% of animals against S. gordonii and S. aureus IE (P < .05). Dabigatran etexilate protected 75% of rats against IE due to S. aureus (P < .005) but failed to protect against S. gordonii (<30% protection). Acenocoumarol was ineffective. CONCLUSIONS: Antiplatelet and direct antithrombin agents may be useful in the prophylaxis of IE in humans. In particular, the potential dual benefit of dabigatran etexilate might be reconsidered for patients with prosthetic valves, who require life-long anticoagulation and in whom S. aureus IE is associated with high mortality.