879 resultados para mining and environmental regulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses long-term and seasonal changes in the North Sea plankton community during the period 1970 to 2008. Based on Continuous Plankton Recorder (CPR) data covering 38 yr, major changes in both phytoplankton and zooplankton abundance and community structure were identified. Regime changes were detected around 1978, 1989 and 1998. The first 2 changes have been discussed in the literature and are defined as a cold episodic event (1978) and a regime shift towards a warm dynamic regime (1989). The effect of these 2 regime changes on plankton indicators was assessed and checked against previous studies. The 1998 change represents a shift in the abundance and seasonal patterns of dinoflagellates and the dominant zooplankton group, the neritic copepods. Furthermore, environmental factors such as air temperature, wind speed and the North Atlantic water inflow were identified as potential drivers of change in seasonal patterns, and the most-likely environmental causes for detected changes were assessed. We suggest that a change in the balance of dissolved nutrients driven by these environmental factors was the cause of the latest change in plankton community structure, which in turn could have affected the North Sea fish community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term variability of the main calycophoran siphonophores was investigated between 1974 and 1999 in a coastal station in the north-western Mediterranean. The data were collected at weekly frequency using a macroplankton net (680 μm mesh size) adapted to quantitatively sample delicate gelatinous plankton. A 3-year collection (1967–1969) of siphonophores from offshore waters using the same methodology showed that the patterns of variability observed inshore were representative of siphonophores’ changes at a regional scale. The aims of the study were: (i) to investigate the patterns of variability that characterised the dominant calycophoran species and assemblages; (ii) to identify the environmental optima that were associated with a significant increase in the dominant siphonophore species and (iii) to verify the influence of hydroclimatic variability on long-term changes of siphonophores. Our results showed that during nearly 3 decades the standing stock of calycophoran siphonophores did not show any significant change, with the annual maximum usually recorded in spring as a result of high densities of the dominant species Lensia subtilis, Muggiaea kochi and Muggiaea atlantica. Nevertheless, major changes in community composition occurred within the calycophoran population. Since the middle 1980s, M. kochi, once the most dominant species, started to decrease allowing other species, the congeneric M. atlantica and Chelophyes appendiculata, to increasingly dominate in spring and summer–autumn, respectively. The comparison of environmental and biotic long-term trends suggests that the decrease of M. kochi was triggered by hydrological changes that occurred in the north-western Mediterranean under the forcing of large-scale climate oscillations. Salinity, water stratification and water temperature were the main hydroclimatic factors associated with a significant increase of siphonophores, different species showing different environmental preferences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The patterns of copepod species richness (S) and their relationship with phytoplankton productivity, temperature and environmental stability were investigated at climatological, seasonal and year-to-year time scales as well as scales along latitudinal and oceanic–neritic gradients using monthly time series of the Continuous Plankton Recorder (CPR) Survey collected in the North East Atlantic between 1958 and 2006. Time series analyses confirmed previously described geographic patterns. Equatorward and towards neritic environments, the climatological average of S increases and the variance explained by the seasonal cycle decreases. The bi-modal character of seasonality increases equatorward and the timing of the seasonal cycle takes place progressive earlier equatorward and towards neritic environments. In the long-term, the climatological average of S decreased significantly (p < 0.001) between 1958 and 2006 in the Bay of Biscay and North Iberian shelf at a rate of ca. 0.04 year−1, and increased at the same rate between 1991 and 2006 in the northernmost oceanic location. The climatological averages of S correlate positively with those of the index of seasonality of phytoplankton productivity (ratio between the minimum and maximum monthly values of surface chlorophyll) and sea surface temperature, and negatively with those of the proxy for environmental stability (monthly frequency of occurrence of daily averaged wind speed exceeding 10 m s−1). The seasonal cycles of S and phytoplankton productivity (surface chlorophyll as proxy) exhibit similar features in terms of shape, timing and explained variance, but the relationship between the climatological averages of both variables is non-significant. From year-to-year, the annual averages of S correlate negatively with those of phytoplankton productivity and positively with those of sea surface temperature along the latitudinal gradient, and negatively with those of environmental stability along the oceanic–neritic gradient. The annual anomalies of S (i.e. factoring out geographic variation) show a unimodal relationship with those of sea surface temperature and environmental stability, with S peaking at intermediate values of the anomalies of these variables. The results evidence the role of seasonality of phytoplankton productivity on the control of copepod species richness at seasonal and climatological scales, giving support to the species richness–productivity hypothesis. Although sea surface temperature (SST) is indeed a good predictor of richness along the latitudinal gradient, it is unable to predict the increase of richness form oceanic to neritic environments, thus lessening the generality of the species richness–energy hypothesis. Meteo-hydrographic disturbances (i.e. SST and wind speed anomalies as proxies), presumably through its role on mixed layer depth dynamics and turbulence and hence productivity, maximise local diversity when occurring at intermediate frequency and or intensity, thus providing support to the intermediate disturbance hypothesis on the control of copepod diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latitudinal gradients in diversity are among the most striking features in ecology. For terrestrial species, climate (i.e. temperature and precipitation) is believed to exert a strong influence on the geographical distributions of diversity through its effects on energy availability. Here, we provide the first global description of geographical variation in the diversity of marine copepods, a key trophic link between phytoplankton and fish, in relation to environmental variables. We found a polar-tropical difference in copepod diversity in the Northern Hemisphere where diversity peaked at subtropical latitudes. In the Southern Hemisphere, diversity showed a tropical plateau into the temperate regions. This asymmetry around the Equator may be explained by climatic conditions, in particular the influence of the Inter-Tropical Convergence Zone, prevailing mainly in the northern tropical region. Ocean temperature was the most important explanatory factor among all environmental variables tested, accounting for 54 per cent of the variation in diversity. Given the strong positive correlation between diversity and temperature, local copepod diversity, especially in extra-tropical regions, is likely to increase with climate change as their large-scale distributions respond to climate warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Interactions between Mycobacterium avium subsp. paratuberculosis (Map) and free-living protozoa in water are likely to occur in nature. The potential impact of ingestion of Map by two naturally occurring Acanthamoeba spp. on this pathogen's survival and chlorine resistance was investigated. Results: Between 4.6 and 9.1% of spiked populations of three Map strains (NCTC 8578, B2 and ATCC 19698), which had been added at a multiplicity of infection of 10: 1, were ingested by Acanthamoeba castellanii CCAP 1501/1B and A. polyphaga CCAP 1501/3B during co-culture for 3 h at 25 C. Map cells were observed to be present within the vacuoles of the amoebae by acid-fast staining. During extended co-culture of Map NCTC 8578 at 25 degrees C for 24 d with both A. castellanii and A. polyphaga Map numbers did not change significantly during the first 7 days of incubation, however a 1-1.5 log(10) increase in Map numbers was observed between days 7 and 24 within both Acanthamoeba spp. Ingested Map cells were shown to be more resistant to chlorine inactivation than free Map. Exposure to 2 mu g/ml chlorine for 30 min resulted in a log(10) reduction of 0.94 in ingested Map but a log(10) reduction of 1.73 in free Map (p <0.001). Conclusion: This study demonstrated that ingestion of Map by and survival and multiplication of Map within Acanthamoeba spp. is possible, and that Map cells ingested by amoebae are more resistant to inactivation by chlorine than free Map cells. These findings have implications with respect to the efficacy of chlorination applied to Map infected surface waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reported incidence of colonization of oropharyngeal medical devices with Candida spp. has increased in recent years, although few studies that have systematically examined the adherence of yeast cells to such biomaterials, the primary step in the process of colonization. This study, therefore, examined the effects of oropharyngeal atmospheric conditions (5% v/v carbon dioxide) and the presence of a salivary conditioning film on both the surface properties and adherence of Candida albicans, Candida krusei and Candida tropicalis to PVC and silicone. Furthermore, the effects of the salivary conditioning film on the surface properties of these biomaterials are reported. Growth of the three Candida spp. in an atmosphere containing 5% v/v CO2 significantly increased their cell surface hydrophobicity and reduced the zeta potential of C. albicans and C. krusei yet increased the zeta potential of C. tropicalis (p < 0.05). Furthermore, growth in 5% v/v CO2 decreased the adherence of C. tropicalis and C. albicans to both PVC and silicone, however, increased adherence of C. krusei (p < 0.05). Pre-treatment of the microorganisms with pooled human saliva significantly decreased their cell surface hydrophobicity and increased their adherence to either biomaterial in comparison to yeast cells that had been pre-treated with PBS (p < 0.05). Saliva treatment of the microorganisms had no consistent effect on microbial zeta potential. Interestingly, adherence of the three, saliva-treated Candida spp. to saliva-treated silicone and PVC was significantly lower than whenever the microorganisms and biomaterials had been treated with PBS (p < 0.05). Treatment of silicone and PVC with saliva significantly altered the surface properties, notably reducing both the advancing and receding contact angles and, additionally, the microrugosity. These effects may contribute to the decreased adherence of saliva-treated microorganisms to these biomaterials. In conclusion, this study has demonstrated the effects of physiological conditions within the oral cavity on the adherence of selected Candida spp. to biomaterials employed as oropharyngeal medical devices. In particular, this study has ominously shown that these materials act as substrates for yeast colonization, highlighting the need for advancements in biomaterial design. Furthermore, it is important that physiological conditions should be employed whenever biocompatibility of oropharyngeal biomaterials is under investigation. © 2001 Kluwer Academic Publishers.