854 resultados para microstructure optical fibers
Resumo:
Experiments of laser welding cast nickel-based superalloy K418 were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness. The corresponding mechanisms were discussed in detail. Results show that the laser welded seam have non-equilibrium solidified microstructures consisting of Cr-Ni-Fe-C austenite solid solution dendrites as the dominant and some fine and dispersed Ni-3(Al,Ti) gamma' phase as well as little amount of MC needle carbides and particles enriched in Nb, Ti and Mo distributed in the interdendritic regions, cracks originated from the liquation of the low melting points eutectics in the HAZ grain boundary are observed, the average microhardness of the welded seam and HAZ is higher than that of the base metal due to alloy elements' redistribution of the strengthening phase gamma'. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Pulsed laser beam was used to modify surface processing for ductile iron. The microstructures of processed specimen were observed using optical microscope (OM). Nanoindentation and micro-hardness of microstructures were measured from surface to inner of sample. The experimental results show that, modification zone is consisted of light melted zone, phase transformation hardening area and transient area. The light melt area is made up of coarse dendrite crystalline with a thickness less than 20um, phase transformation hardening area mainly of laminal or acicular martensite, retained austenite and graphite, i.e. M+A prime+ G. The cow-eye microstructure around graphite sphere always is formed in phase transformation hardening area zone, which consisting of a variety structure with the distance from the surface. So, it maybe as a obvious sign distinguishing modification zone border. Finally, the microstructures evolution of laser pulse processed ductile iron was analyzed coupling with beam energy distribution in space and laser pulse heating procession characteristics. The analysis shows that energy distribution of laser pulse has an important effect on microstructure during laser pulse modified ductile iron. Multi-scale and interlace arrangement are the important features for laser pulse modified ductile iron. Of microstructure.
Resumo:
Acceptor-doped ceria has been recognized as a promising intermediate temperature solid oxide fuel cell electrode/electrolyte material. For practical implementation of ceria as a fuel cell electrolyte and for designing model experiments for electrochemical activity, it is necessary to fabricate thin films of ceria. Here, metal-organic chemical vapor deposition was carried out in a homemade reactor to grow ceria films for further electrical, electrochemical, and optical characterization. Doped/undoped ceria films are grown on single crystalline oxide wafers with/without Pt line pattern or Pt solid layer. Deposition conditions were varied to see the effect on the resultant film property. Recently, proton conduction in nanograined polycrystalline pellets of ceria drew much interest. Thickness-mode (through-plane, z-direction) electrical measurements were made to confirm the existence of proton conductivity and investigate the nature of the conduction pathway: exposed grain surfaces and parallel grain boundaries. Columnar structure presumably favors proton conduction, and we have found measurable proton conductivity enhancement. Electrochemical property of gas-columnar ceria interface on the hydrogen electrooxidation is studied by AC impedance spectroscopy. Isothermal gas composition dependence of the electrode resistance was studied to elucidate Sm doping level effect and microstructure effect. Significantly, preferred orientation is shown to affect the gas dependence and performance of the fuel cell anode. A hypothesis is proposed to explain the origin of this behavior. Lastly, an optical transmittance based methodology was developed to obtain reference refractive index and microstructural parameters (thickness, roughness, porosity) of ceria films via subsequent fitting procedure.
Resumo:
A technique for enhanced generation of selected high harmonics in a gas medium, in a high ionization limit, is proposed in this paper. An aperiodically corrugated hollow-core fiber is employed to modulate the intensity of the fundamental laser pulse along the direction of propagation, resulting in multiple quasi-phase-matched high harmonic emissions at the cutoff region. Simulated annealing (SA) algorithm is applied for optimizing the aperiodic hollow-core fiber. Our simulation shows that the yield of selected harmonics is increased equally by up to 2 orders of magnitude compared with no modulation and this permits flexible control of the quasi-phase-matched emission of selected harmonics by appropriate corrugation. (c) 2007 Optical Society of America.
Resumo:
A white light interferometer is developed to measure the distributed polarization coupling in high-birefringence polarization-maintaining fibers (PMFs). Usually the birefringence dispersion between two orthogonal eigenmodes of PMFs is neglected in such systems. Theoretical analysis and experimental results show that the birefringence dispersion becomes a nonnegligible factor in a long-fiber test. Significant broadening of interferograms and loss of longitudinal coherence are observed. The spatial resolution and measurement sensitivity of the system decrease correspondingly. Optimum spectrum width selection is presented for better spatial resolution and measurement range. c 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We demonstrate theoretically that the negatively chirped femtosecond laser pulse can be spectrally narrowed by cross-phase modulation. The new view is well Supported by numerical simulation. The negative chirp method in fibers might be useful in all optical wavelength switching applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new method for measuring the birefringence dispersion in polarization-maintaining fibers (PMFs) with high sensitivity and accuracy is presented. The method employs white-light interferences between two orthogonally polarized modes of PMFs. The group birefringence of the fiber is calibrated first. Then the birefringence dispersion and its variation along different fiber sections are acquired by analyzing the broadening of interferograms at different fiber lengths. The main sources of error are investigated. Bireffingence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm). A measurement repeatability of 0.001 ps/(km nm) is achieved. (C) 2007 Optical Society of America.
Resumo:
A white light interferometer is developed to measure the distributed polarization coupling in high-birefringence polarization-maintaining fibers (PMFs). Usually the birefringence dispersion between two orthogonal eigenmodes of PMFs is neglected in such systems. Theoretical analysis and experimental results show that the birefringence dispersion becomes a nonnegligible factor in a long-fiber test. Significant broadening of interferograms and loss of longitudinal coherence are observed. The spatial resolution and measurement sensitivity of the system decrease correspondingly. Optimum spectrum width selection is presented for better spatial resolution and measurement range. c 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
An approximate analytical description for fundamental-mode fields of graded-index fibers is explicitly presented by use of the power-series expansion method, the maximum-value condition at the fiber axis, the decay properties of fundamental-mode fields at large distance from the fiber axis, and the approximate modal parameters U obtained from the Gaussian approximation. This analytical description is much more accurate than the Gaussian approximation and at the same time keep the simplicity of the latter. As two special examples, we present the approximate analytical formulas for the fundamental-mode fields of a step profile fiber and a Gaussian profile fiber, and we find that they are both highly accurate in the single-mode range by comparing them with the corresponding exact solutions.
Resumo:
A theoretical method to analyze four-layer large flattened mode (LFM) fibers is presented. The influence of the second cladding on the properties of four-layer LFM fiber, including the fundamental and higher-order modal fields, effective area, bending loss, and dispersion, are studied by comparison. At the same time, the reasons for the different characteristics are considered. The obtained results indicate that the effective area of the four-layer LFM fiber is about 1.6 times larger than that of the conventional standard step-index fiber and the fibers have better bend-induced filtering ability than three-layer LFM fibers. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A theoretical method to analyze four-layer large flattened mode (LFM) fibers is presented. The influence of the second cladding on the properties of four-layer LFM fiber, including the fundamental and higher-order modal fields, effective area, bending loss, and dispersion, are studied by comparison. At the same time, the reasons for the different characteristics are considered. The obtained results indicate that the effective area of the four-layer LFM fiber is about 1.6 times larger than that of the conventional standard step-index fiber and the fibers have better bend-induced filtering ability than three-layer LFM fibers. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In this paper the magnetic and magneto-optical properties of amorphous rare earth-transition metal (RE-TM) alloys as well as the magnetic coupling in the multi-layer thin films for high density optical data storage are presented. Using magnetic effect in scanning tunneling microscopy the clusters structure of amorphous RE-TM thin films has been observed and the perpendicular magnetic anisotropy in amorphous RE-TM thin films has been interpreted. Experimental results of quick phase transformation under short pulse laser irradiation of amorphous semiconductor and metallic alloy thin films for phase change optical recording are reported. A step-by-step phase transformation process through metastable states has been observed. The waveform of crystallization propagation in micro-size spot during laser recording in amorphous semiconductor thin films is characterized and quick recording and erasing mechanism for optical data storage with high performance are discussed. The nonlinear optical effects in amorphous alloy thin films have been studied. By photo-thermal effect or third order optical nonlinearity, the optical self-focusing is observed in amorphous mask thin films. The application of amorphous thin films with super-resolution near field structure for high-density optical data storage is performed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A series-parallel model is introduced to calculate the effective thermal conductivities of hollow claddings of photonic crystal fibers ( PCFs ). The temperature distribution and thermal-optical properties of PCF lasers are studied by solving the heat transfer equations. The average power scaling of the PCF lasers in respect of the thermal effects is also discussed. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A series-parallel model is introduced to calculate the effective thermal conductivities of hollow claddings of photonic crystal fibers ( PCFs ). The temperature distribution and thermal-optical properties of PCF lasers are studied by solving the heat transfer equations. The average power scaling of the PCF lasers in respect of the thermal effects is also discussed. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In this study, we examined the microstructure of crystals generated in borate glass by femtosecond laser irradiation (FSLI). The distribution of the high-temperature and low-temperature phases of barium metaborate crystals produced in the borate glass is analyzed using Raman spectroscopy. We then propose the possible mechanism for the generation of crystals in glass by FSLI.