958 resultados para micro-CT,cone beam Ct,trabecular tissue,image segmentation,computed tomography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

En radiothérapie, la tomodensitométrie (CT) fournit l’information anatomique du patient utile au calcul de dose durant la planification de traitement. Afin de considérer la composition hétérogène des tissus, des techniques de calcul telles que la méthode Monte Carlo sont nécessaires pour calculer la dose de manière exacte. L’importation des images CT dans un tel calcul exige que chaque voxel exprimé en unité Hounsfield (HU) soit converti en une valeur physique telle que la densité électronique (ED). Cette conversion est habituellement effectuée à l’aide d’une courbe d’étalonnage HU-ED. Une anomalie ou artefact qui apparaît dans une image CT avant l’étalonnage est susceptible d’assigner un mauvais tissu à un voxel. Ces erreurs peuvent causer une perte cruciale de fiabilité du calcul de dose. Ce travail vise à attribuer une valeur exacte aux voxels d’images CT afin d’assurer la fiabilité des calculs de dose durant la planification de traitement en radiothérapie. Pour y parvenir, une étude est réalisée sur les artefacts qui sont reproduits par simulation Monte Carlo. Pour réduire le temps de calcul, les simulations sont parallélisées et transposées sur un superordinateur. Une étude de sensibilité des nombres HU en présence d’artefacts est ensuite réalisée par une analyse statistique des histogrammes. À l’origine de nombreux artefacts, le durcissement de faisceau est étudié davantage. Une revue sur l’état de l’art en matière de correction du durcissement de faisceau est présentée suivi d’une démonstration explicite d’une correction empirique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’ostéochondrite disséquante (OCD) est un défaut focal du processus d’ossification endochondrale en des sites spécifiques au niveau épiphysaire. Elle est caractérisée par la présence de fragments ostéochondraux pouvant se détacher de la surface articulaire. Cette maladie a un impact majeur sur les performances athlétiques des chevaux. Les deux hypothèses principales présentement véhiculées quant à sa pathogénie sont une nécrose ischémique du cartilage de croissance et une altération du métabolisme de la matrice de collagène de type II au sein du cartilage de croissance. Malgré de nombreuses années de recherche sur le sujet, plusieurs aspects de cette maladie demeurent inconnus. L’objectif de cette étude était de décrire le développement épiphysaire équin au niveau du membre pelvien à l’aide de l’imagerie médicale afin de déterminer si des variations du processus de maturation à certains sites pouvaient être un facteur prédisposant au développement de lésions d’OCD. Des membres pelviens de fœtus et de jeunes poulains ont été étudiés post-mortem. L’épiphyse du fémur distal, tibia distal et du talus ont été examinées par tomodensitométrie (CT) et résonnance magnétique 1.5 Tesla (IRM) dans le but de documenter le degré et le patron d’ossification, la régularité du front d’ossification, de même que le pourcentage du diamètre épiphysaire demeurant occupé par le complexe de cartilage articulaire-épiphysaire, et ce au niveau de certains sites prédéterminés. Les centres secondaires d’ossification (SOCs) ont été détectés pour la première fois à 7 mois de gestation (MOG) au niveau de l’épiphyse fémorale distale et à 8 MOG au niveau de l’épiphyse tibiale distale et du talus. À 8-9 MOG la lèvre latérale de la trochlée fémorale, la malléole médiale du tibia (MM) et la partie crâniale de la crête intermédiaire du tibia distal (DIRT(Cr)), tous des sites prédisposés à la maladie, avaient le plus haut pourcentage de cartilage de tous les sites évalués. Post-partum, le pourcentage de cartilage de la MM et de la DIRT(Cr) sont demeurés importants. Le CT et l’IRM ont su illustrer le développement épiphysaire équin et soutenir d’avantage le fait qu’un cartilage plus épais à certains sites articulaires pourrait avoir un rôle dans le développement de lésions d’OCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, we present a case of myositis ossificans traumatica (MOT) of the medial pterygoid muscle that had developed after mandibular block anesthesia administered for endodontic treatment of the lower right second molar, demonstrating typical features of this condition. MOT should be considered as a differential diagnosis when there is severe limitation of jaw opening and an associated trauma. Panoramic radiographs and axial and coronal computed tomography (CT) scans can effectively delineate the calcified mass. Other imaging studies that may be helpful include magnetic resonance imaging (MRI), bone scans, and ultrasound. As shown in our case, calcified masses were found in the right mandibular angle, which severely limited jaw opening. Some earlier reported cases of MOT were treated by extraoral surgical approaches with complete removal of the evolving muscle. The aim of this case report is to present only the diagnostic imaging aspects of myositis ossificans traumatica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess 3D morphological variations and local and systemic biomarker profiles in subjects with a diagnosis of temporomandibular joint osteoarthritis (TMJ OA).Design: Twenty-eight patients with long-term TMJ OA (39.9 +/- 16 years), 12 patients at initial diagnosis of OA (47.4 +/- 16.1 years), and 12 healthy controls (41.8 +/- 12.2 years) were recruited. All patients were female and had cone beam CT scans taken. TMJ arthrocentesis and venipuncture were performed on 12 OA and 12 age-matched healthy controls. Serum and synovial fluid levels of 50 biomarkers of arthritic inflammation were quantified by protein microarrays. Shape Analysis MANCOVA tested statistical correlations between biomarker levels and variations in condylar morphology.Results: Compared with healthy controls, the OA average condyle was significantly smaller in all dimensions except its anterior surface, with areas indicative of bone resorption along the articular surface, particularly in the lateral pole. Synovial fluid levels of ANG, GDF15, TIMP-1, CXCL16, MMP-3 and MMP-7 were significantly correlated with bone apposition of the condylar anterior surface. Serum levels of ENA-78, MMP-3, PAI-1, VE-Cadherin, VEGF, GM-CSF, TGF beta b1, IFN gamma g, TNF alpha a, IL-1 alpha a, and IL-6 were significantly correlated with flattening of the lateral pole. Expression levels of ANG were significantly correlated with the articular morphology in healthy controls.Conclusions: Bone resorption at the articular surface, particularly at the lateral pole was statistically significant at initial diagnosis of TMJ OA. Synovial fluid levels of ANG, GDF15, TIMP-1, CXCL16, MMP-3 and MMP-7 were correlated with bone apposition. Serum levels of ENA-78, MMP-3, PAI-1, VE-Cadherin, VEGF, GM-CSF, TGF beta 1, IFN gamma, TNF alpha, IL-1 alpha, and IL-6 were correlated with bone resorption. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine whether image artifacts caused by orthodontic metal accessories interfere with the accuracy of 3D CBCT model superimposition. A human dry skull was subjected three times to a CBCT scan: at first without orthodontic brackets (T1), then with stainless steel brackets bonded without (T2) and with orthodontic arch wires (T3) inserted into the brackets' slots. The registration of image surfaces and the superimposition of 3D models were performed. Within-subject surface distances between T1-T2, T1-T3 and T2-T3 were computed and calculated for comparison among the three data sets. The minimum and maximum Hausdorff Distance units (HDu) computed between the corresponding data points of the T1 and T2 CBCT 3D surface images were 0.000000 and 0.049280 HDu, respectively, and the mean distance was 0.002497 HDu. The minimum and maximum Hausdorff Distances between T1 and T3 were 0.000000 and 0.047440 HDu, respectively, with a mean distance of 0.002585 HDu. In the comparison between T2 and T3, the minimum, maximum and mean Hausdorff Distances were 0.000000, 0.025616 and 0.000347 HDu, respectively. In the current study, the image artifacts caused by metal orthodontic accessories did not compromise the accuracy of the 3D model superimposition. Color-coded maps of overlaid structures complemented the computed Hausdorff Distances and demonstrated a precise fusion between the data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main problem connected to cone beam computed tomography (CT) systems for industrial applications employing 450 kV X-ray tubes is the high amount of scattered radiation which is added to the primary radiation (signal). This stray radiation leads to a significant degradation of the image quality. A better understanding of the scattering and methods to reduce its effects are therefore necessary to improve the image quality. Several studies have been carried out in the medical field at lower energies, whereas studies in industrial CT, especially for energies up to 450 kV, are lacking. Moreover, the studies reported in literature do not consider the scattered radiation generated by the CT system structure and the walls of the X-ray room (environmental scatter). In order to investigate the scattering on CT projections a GEANT4-based Monte Carlo (MC) model was developed. The model, which has been validated against experimental data, has enabled the calculation of the scattering including the environmental scatter, the optimization of an anti-scatter grid suitable for the CT system, and the optimization of the hardware components of the CT system. The investigation of multiple scattering in the CT projections showed that its contribution is 2.3 times the one of primary radiation for certain objects. The results of the environmental scatter showed that it is the major component of the scattering for aluminum box objects of front size 70 x 70 mm2 and that it strongly depends on the thickness of the object and therefore on the projection. For that reason, its correction is one of the key factors for achieving high quality images. The anti-scatter grid optimized by means of the developed MC model was found to reduce the scatter-toprimary ratio in the reconstructed images by 20 %. The object and environmental scatter calculated by means of the simulation were used to improve the scatter correction algorithm which could be patented by Empa. The results showed that the cupping effect in the corrected image is strongly reduced. The developed CT simulation is a powerful tool to optimize the design of the CT system and to evaluate the contribution of the scattered radiation to the image. Besides, it has offered a basis for a new scatter correction approach by which it has been possible to achieve images with the same spatial resolution as state-of-the-art well collimated fan-beam CT with a gain in the reconstruction time of a factor 10. This result has a high economic impact in non-destructive testing and evaluation, and reverse engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the field of forensics has experienced a rapid increase in the use of modern cross-sectional imaging in forensic investigations. We examined the value of post-mortem computed tomography (CT) imaging relative to autopsy for distinguishing aspiration into the lungs from airways, from lung alterations due to other causes, and for identifying the aspirated material. We selected 54 bodies submitted to whole-body CT scanning prior to autopsy. All cases had autopsy findings of blood (31 cases), fresh water (12 cases), or gastric content (11 cases) aspiration. The radiological images were retrospectively analyzed for airway and lung aspiration. In all cases, CT imaging detected pulmonary abnormalities suggestive of aspiration. Nevertheless, analysis of the CT images alone was not able to identify the aspirated material or to distinguish pulmonary findings of aspiration from lung changes due to other causes, except for a few cases of hemo-aspiration. However, due to its ability to visualize the entire parenchyma, CT imaging was superior to autopsy in providing additional data about the distribution and severity of the aspiration as well as in detecting small abnormalities. Post-mortem CT imaging should be considered as a superior tool for forensic investigations of aspiration due to its ability to document diagnostic conclusions and to guide the forensic pathologist during lung tissue examination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid technical advances in computed tomography have led to an increased number of clinical indications. Unfortunately, at the same time the radiation exposure to the population has also increased due to the increased total number of CT examinations. In the last few years various publications have demonstrated the feasibility of radiation dose reduction for CT examinations with no compromise in image quality and loss in interpretation accuracy. The majority of the proposed methods for dose optimization are easy to apply and are independent of the detector array configuration. This article reviews indication-dependent principles (e.g. application of reduced tube voltage for CT angiography, selection of the collimation and the pitch, reducing the total number of imaging series, lowering the tube voltage and tube current for non-contrast CT scans), manufacturer-dependent principles (e.g. accurate application of automatic modulation of tube current, use of adaptive image noise filter and use of iterative image reconstruction) and general principles (e.g. appropriate patient-centering in the gantry, avoiding over-ranging of the CT scan, lowering the tube voltage and tube current for survey CT scans) which lead to radiation dose reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of this paper is to demonstrate that computed tomography (CT) and three-dimensional (3D) CT imaging techniques can be useful tools for evaluating gunshot wounds of the skull in forensic medicine. Three purposes can be achieved: (1) identifying and recognising the bullet entrance wound - and exit wound, if present; (2) recognising the bullet's intracranial course by studying damage to bone and brain tissue; (3) suggesting hypotheses as to the dynamics of the event. MATERIALS AND METHODS: Ten cadavers of people who died of a fatal head injury caused by a single gunshot were imaged with total-body CT prior to conventional autoptic examination. Three-dimensional-CT reconstructions were obtained with the volume-rendering technique, and data were analysed by two independent observers and compared with autopsy results. RESULTS: In our experience, CT analysis and volumetric reconstruction techniques allowed the identification of the bullet entrance and exit wounds and intracranial trajectory, as well as helping to formulate a hypothesis on the extracranial trajectory to corroborate circumstantial evidence. CONCLUSIONS: CT imaging techniques are excellent tools for addressing the most important questions of forensic medicine in the case of gunshot wounds of the skull, with results as good as (or sometimes better than) traditional autoptic methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conclusion: A robot built specifically for stereotactic cochlear implantation provides equal or better accuracy levels together with a better integration into a clinical environment, when compared to existing approaches based on industrial robots. Objectives: To evaluate the technical accuracy of a robotic system developed specifically for lateral skull base surgery in an experimental setup reflecting the intended clinical application. The invasiveness of cochlear electrode implantation procedures may be reduced by replacing the traditional mastoidectomy with a small tunnel slightly larger in diameter than the electrode itself. Methods: The end-to-end accuracy of the robot system and associated image-guided procedure was evaluated on 15 temporal bones of whole head cadaver specimens. The main components of the procedure were as follows: reference screw placement, cone beam CT scan, computer-aided planning, pair-point matching of the surgical plan, robotic drilling of the direct access tunnel, and post-operative cone beam CT scan and accuracy assessment. Results: The mean accuracy at the target point (round window) was 0.56 ± 41 mm with an angular misalignment of 0.88 ± 0.41°. The procedural time of the registration process through the completion of the drilling procedure was 25 ± 11 min. The robot was fully operational in a clinical environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the accuracy of hypodense regions in non-contrast-enhanced cardiac computed tomography (unenhanced CT) to identify nonviable myocardial scar tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE : For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed. METHODS :    Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed. RESULTS :    The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of [Formula: see text] mm. CONCLUSIONS :    Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time.