913 resultados para metallic scales


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the authors' previous work, in this paper the systematical analyses on the motion and the inner solutions of a geostrophic vortex have been presented by means of thematched asymptotic expansion method with multiple time scales (S/gh001/2 and α S/gh001/2) and space scales. It has been shown that the leading inner solutions to the core structure in two-time scales analyses are identified with the results in normal one-time scale analyses. The time averages of the first-order solutions on short time variable τ are the same as the first-order solutions obtained in one normal time scale analyses. The geostrophic vortex induces an oscillatory motion in addition to moving with the background flow. The period, amplitude andthe deviation from the mean trajectory depend on the core structure and the initial conditions. The velocity of the motion of vortex center varies periodically and the time average of the velocity on short time variable τ is equal to the value of the local mean velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The North American weevil ( Euhrychiopsis lecontei (Dietz)) is being considered as a biological control agent for Eurasian watermilfoil ( Myriophyllum spicatum L.). This native insect damages watermilfoil plants and is frequently associated with declining watermilfoil populations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure of Nd_{60}Al_{10}Ni_{10}Cu_{20-x}Fex (x = 0, 5, 7, 10, 15, 20) alloys can change from homogeneous phase to a composite structure consisting of amorphous phase plus clusters or nanocrystals by adjusting the Fe content. The effect of microstructure on the plastic deformation behavior in this alloy system is studied by using nanoindentation. The alloys with homogeneous amorphous structure exhibit pronounced flow serrations during the loading process of nanoindentation. The addition of Fe changes the plastic deformation behavior remarkablely. No flow serration is observed in the alloys with high Fe content for the indentation depth of 500 nm. The mechanism for the change of plastic serrated flow behavior is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different spatial levels are involved concerning damage accumulation to eventual failure. nucleation and growth rates of microdamage nN* and V*. It is found that the trans-scale length ratio c*/L does not directly affect the process. Instead, two independent dimensionless numbers: the trans-scale one * * ( V*)including the * **5 * N c V including mesoscopic parameters only, play the key role in the process of damage accumulation to failure. The above implies that there are three time scales involved in the process: the macroscopic imposed time scale tim = /a and two meso-scopic time scales, nucleation and growth of damage, (* *4) N N t =1 n c and tV=c*/V*. Clearly, the dimensionless number De*=tV/tim refers to the ratio of microdamage growth time scale over the macroscopically imposed time scale. So, analogous to the definition of Deborah number as the ratio of relaxation time over external one in rheology. Let De be the imposed Deborah number while De represents the competition and coupling between the microdamage growth and the macroscopically imposed wave loading. In stress-wave induced tensile failure (spallation) De* < 1, this means that microdamage has enough time to grow during the macroscopic wave loading. Thus, the microdamage growth appears to be the predominate mechanism governing the failure. Moreover, the dimensionless number D* = tV/tN characterizes the ratio of two intrinsic mesoscopic time scales: growth over nucleation. Similarly let D be the “intrinsic Deborah number”. Both time scales are relevant to intrinsic relaxation rather than imposed one. Furthermore, the intrinsic Deborah number D* implies a certain characteristic damage. In particular, it is derived that D* is a proper indicator of macroscopic critical damage to damage localization, like D* ∼ (10–3~10–2) in spallation. More importantly, we found that this small intrinsic Deborah number D* indicates the energy partition of microdamage dissipation over bulk plastic work. This explains why spallation can not be formulated by macroscopic energy criterion and must be treated by multi-scale analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shear banding characterization of Zr64.13Cu15.75Ni10.12Al10 and Zr65Cu15Ni10Al10 bulk metallic glasses (BMGs) with significant difference in inherent plasticity and quite similar chemical composition was studied by depth sensitive macroindentaion tests with conical indenter. Well-developed shear band pattern can be found for both BMGs after indentation. Distinct difference in the shear band spacing, scale of plastic deformation region and the shear band branching in the two BMGs account for the different plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic survey of the available data such as elastic constants, density, molar mass, and glass transition temperature of 45 metallic glasses is conducted. It is found that a critical strain controlling the onset of plastic deformation is material-independent. However, the correlation between elastic constants of solid glass and vitrification characteristics of its liquid does not follow a simple linear relation, and a characteristic volume, viz. molar volume, maybe relating to the characteristic size of a shear transformation zone (STZ), should be involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cohesive zone characterizations of the interface between metal film and ceramic substrate at micro- and nano-scales are performed in the present research. At the nano-scale, a special potential for special material interface (Ag/MgO) is adopted to investigate the interface separation mechanism by using MD simulation, and stress-separation relationship will be obtained. At the micro-scale, peeling experiment is performed for the Al film/Al2O3 substrate system with an adhesive layer at the interface. Adhesive is a mixture of epoxy and polyimide with mass ratio 1:1, by which a brittle cohesive property is obtained. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling. The experimental result has a similar trend as modeling result for a weak adhesion interface case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fractal approach was proposed to investigate the meso structures and size effect of metallic foams: For a series At foams of different relative densities, the information dimension method was applied to measure meso structures. The generalized sierpinski carpet was introduced to map the meso structures of the foam according to specific dimension. The results show that the fractal-based model can not only reveal the variation of yield strength with specimen size, but also bridge the meso structures and mechanical proper-ties of Al foams directly. Key words: metallic foams; fractal; size effect; meso structures