946 resultados para mesh opening rigidity
Resumo:
A series of metathesis polymers and copolymers have been formed and their structures were analysed by C-13 NMR spectroscopy. Noble metal and non-noble metal salt catalysts are distinguished by their behaviour in various solvents. Thus, in phenolic solvents, the former class produce alternating copolymers from cyclopentene and norbornene, while the latter are unaffected and produce random copolymers. In contrast, ether solvents have the effect of markedly increasing the cis content of polymers from the latter catalysts while the former are unaffected.
Resumo:
Ring-opened metathesis polymers and copolymers have been formed from norbornene, norbornadiene, a range of their derivatives, and cyclopentene using RuCl2(CHPh)(PCy3)(2), as catalyst. C-13 NMR analysis of the polymers illustrate a rather selective propagation reaction. The catalyst is highly regioselective, and the polymers are generally high trans with a strong isotactic bias. However, polymers from diene monomers tend to be less isotactic than those from the corresponding monoenes, and in the case of 7-methylnorbornadiene the polymer has an overall syndiotactic bias. A rate enhancing effect, noted previously, due to an oxygen atom proximate to the monomer double bond, is less pronounced than with other initiators. Catalyst activity, in the case of certain diene monomers, was shown to be monomer dependent and rate enhancements were also achieved using phenol as solvent. The results are interpreted in terms of the steric and electronic properties of both the catalyst and the monomers.
Resumo:
Almost alternating copolymers of bicyclo[2.2.1]hept-2-ene and cyclopentene have been formed by ring-opening metathesis polymerization using a RuCl3-phenol catalyst system; this highly novel result is attributed to differential steric influences exerted by a hydrogen-bonded solvent cage which encloses the catalyst site.