917 resultados para median arterial pressure
Resumo:
The central injection of clonidine (an alpha-2-adrenoceptor agonist) in conscious normotensive rats produces hypertensive responses and bradycardia. The present study was performed to investigate the effect of electrolytic lesions in the anteroventral third ventricle (AV3V) region or in the lateral hypothalamus (LH) on the pressor and bradycardic responses induced by central clonidine in rats. Mean arterial pressure and heart rate were recorded in sham or AV3V-lesioned rats with cerebral stainless steel cannulae implanted into the lateral cerebral ventricle (ICV) or LH. and in sham or bilateral LH-lesioned rats with cannulae-implanted ICV. The injection of clonidine (40 nmol) ICV or into the LH of sham rats produced a pressor response (37 +/- 2-48 +/- 3 mmHg) and bradycardia (-45 +/- 10--93 +/- 6 bpm). After AV3V-lesion (3 and 12 days) or LH-lesion (3 days) the pressor response was abolished and a small hypotensive response was induced by the injection of clonidine (-1 +/- 3--16 +/- 3 mmHg). The bradycardia (-27 +/- 6--57 +/- 11 bpm) was reduced, but not abolished by the lesions. These results show that the AV3V region and LH are important cerebral structures that participate in the excitatory pathways involved in the pressor response to central clonidine in rats. They also suggest that, in the absence of these pressor pathways, the hypotensive responses to central clonidine may appear in conscious rats.
Resumo:
The central injection of clonidine (an alpha-2-adrenoceptor agonist) in conscious normotensive rats produces hypertensive responses and bradycardia. The present study was performed to investigate the effect of electrolytic lesions of the lateral hypothalamus (LH) on the pressor and bradycardic responses induced by clonidine injected into the medial septal area (MSA) in conscious and unrestrained rats. Male Holtzman rats weighing 250-300 g were used. Mean arterial pressure and heart rate were recorded in sham- or bilateral LH-lesioned rats with a cerebral stainless steel cannula implanted into the MSA. The injection of clonidine (40 nmol/mu-l) into the MSA of sham rats (N = 8) produced a pressor response (36 +/- 7 mmHg, P<0.05) and bradycardia (-70 +/- 13 bpm, P<0.05) compared to saline. Fourteen days after LH-lesion (N = 9) the pressor response was reduced (9 +/- 10 mmHg, P<0.05) but no change was observed in the bradycardia (-107 +/- 24 bpm). These results show that LH is an important area involved in the pressor response to clonidine injected into the MSA of rats.
Resumo:
1. A method for obtaining the end-systolic left ventricular (LV) pressure-diameter and stress-diameter relationships in man was critically analyzed.2. Pressure-diameter and stress-diameter relationships were determined throughout the cardiac cycle by combining standard LV manometry with M-mode echocardiography. Nine adult patients with heart disease and without heart failure were studied during intracardiac catheterization under three different conditions of arterial pressure, i.e., basal (B) condition (mean +/- SD systolic pressure, 102 +/- 10 mmHg) and two stable states of arterial hypertension (H(I), 121 +/- 12 mmHg; H(II), 147 +/- 17 mmHg) induced by venous infusion of phenylephrine after parasympathetic autonomic blockade with 0.04 mg/kg atropine.3. Significant reflex heart rate variation with arterial hypertension was observed (B, 115 +/- 20 bpm; H(I), 103 +/- 14 bpm; H(II), 101 +/- 13 bpm) in spite of the parasympathetic blockade with atropine. The linear end-systolic pressure-diameter and stress-diameter relationships ranged from 53.0 to 160.0 mmHg/cm and from 97.0 to 195.0 g/cm3, respectively.4. The end-systolic LV pressure-diameter and stress-diameter relationship lines presented high and variable slopes. The slopes, which are indicators of myocardial contractility, are susceptible to modifications by small deviations in the measurement of the ventricular diameter or by delay in the pressure curve recording.
Resumo:
This study was performed to investigate the effect of lesion of the anteroventral third ventricle (AV3V) region on the pressor, bradycardic, dipsogenic, natriuretic, kaliuretic, and antidiuretic responses induced by cholinergic activation of the subfornical organ (SFO) in rats. Male Holtzman rats with sham or electrolytic AV3V lesion were implanted with a stainless steel cannula directly into the SFO. Microinjection of the cholinergic agonist carbachol (2 nmol) into the SFO of sham rats induced natriuresis (563 +/- 70 mueq/120 min), kaliuresis (205 +/- 13 mueq/120 min), antidiuresis (10.4 +/- 0.5 ml/120 min), water intake (9.3 +/-1.4 ml/h), bradycardia (-42 +/- 11 beats/min), and increased mean arterial pressure (53 +/- 3 mmHg). In AV3V-lesioned rats (1-5 and 14-18 days), there was a reduction of natriuresis (23 +/-11 and 105 +/- 26 mueq/120 min, respectively), kaliuresis (92 +/- 16 and 100 +/- 17 mueq/120 min), water intake (2.5 +/- 0.9 and 1.8 +/- 1.0 ml/h), and arterial pressure increase (17 +/- 2 and 16 +/- 2 mmHg) induced by carbachol into the SFO. Increased antidiuresis (6.0 +/- 1.0 and 5.2 +/- 0.7 ml/120 min, respectively) and tachycardia (39 +/- 4 and 15 +/- 12 beats/min) instead of bradycardia were also observed in both groups of AV3V-lesioned rats. These results show that cholinergic activation of the rat SFO produces marked natriuresis and kaliuresis in addition to the well-known pressor and dipsogenic responses. They also show that the AV3V region plays an important role in the cardiovascular, fluid, and electrolytic changes induced by cholinergic activation of the SFO in rats.
Resumo:
Objective-To evaluate the isoflurane-sparing effects of lidocaine and fentanyl administered by constant rate infusion (CRI) during surgery in dogs.Design-Randomized prospective study.Animals-24 female dogs undergoing unilateral mastectomy because of mammary neoplasia.Procedures-After premedication with acepromazine and morphine and anesthetic induction with ketamine and diazepam, anesthesia in dogs (n = 8/group) was maintained with isoflurane combined with either saline (0.9% NaCl) solution (control), liclocaine (1.5 mg/kg [0.68 mg/lb], IV bolus, followed by 250 mu g/kg/min [113 mu g/lb/min], CRI), or fentanyl (5 mu g/kg [2.27 mu g/lb], IV bolus, followed by 0.5 mu g/kg/min [0.23 mu g/lb/min], CRI). Positive-pressure ventilation was used to maintain eucapnia. An anesthetist unaware of treatment, endtidal isoflurane (ETiso) concentration, and vaporizer concentrations adjusted a nonprecision vaporizer to maintain surgical depth of anesthesia. Cardiopulmonary variables and ETiso values were monitored before and after beginning surgery.Results-Heart rate was lower in the fentanyl group. Mean arterial pressure did not differ among groups after surgery commenced. In the control group, mean +/- SD ETiso values ranged from 1.16 +/- 0.35% to 1.94 +/- 0.96%. Fentanyl significantly reduced isoflurane requirements during surgical stimulation by 54% to 66%, whereas the reduction in ETiso concentration (34% to 44%) observed in the lidocaine group was not significant.Conclusions and Clinical Relevance-Administration of fentanyl resulted in greater isoflurane sparing effect than did liclocaine. However, it appeared that the low heart rate induced by fentanyl may partially offset the improvement in mean arterial pressure that would be expected with reduced isoflurane requirements.
Resumo:
Objective-To evaluate the effects of 2 remifentanil infusion regimens on cardiovascular function and responses to nociceptive stimulation in propofol-anesthetized cats.Animals-8 adult cats.Procedures-On 2 occasions, cats received acepromazine followed by propofol (6 mg/kg then 0.3 mg/kg/min, IV) and a constant rate infusion (CRI) of remifentanil (0.2 or 0.3 mu g/kg/min,IV) for 90 minutes and underwent mechanical ventilation (phase I). After recording physiologic variables, an electrical stimulus (50 V; 50 Hz; 10 milliseconds) was applied to a forelimb to assess motor responses to nociceptive stimulation. After an interval (>= 10 days), the same cats were anesthetized via administration of acepromazine and a similar infusion regimen of propofol; the remifentanil infusion rate adjustments that were required to inhibit cardiovascular responses to ovariohysterectomy were recorded (phase II).Results-In phase I, heart rate and arterial pressure did not differ between remifentanil-treated groups. From 30 to 90 minutes, cats receiving 0.3 mu g of remifentanil/kg/min had no response to noxious stimulation. Purposeful movement was detected more frequently in cats receiving 0.2 mu g of remifentanil/kg/min. In phase II, the highest dosage (mean +/- SEM) of remifentanil that prevented cardiovascular responses was 0.23 +/- 0.01 mu g/kg/min. For all experiments, mean time from infusion cessation until standing ranged from 115 to 140 minutes.Conclusions and Clinical Relevance-Although the lower infusion rate of remifentanil allowed ovariohysterectomy to be performed, a CRI of 0.3 mu g/kg/min was necessary to prevent motor response to electrical stimulation in propofol-anesthetized cats. Recovery from anesthesia was prolonged with this technique.
Resumo:
To evaluate the effects of acepromazine maleate on the cardiovascular changes induced by dopamine in isoflurane-anesthetized dogs.Prospective, randomized cross-over experimental design.Six healthy adult spayed female dogs weighing 16.4 +/- 3.5 kg (mean +/- SD).Each dog received two treatments, at least 1 week apart. Acepromazine (0.03 mg kg(-1), IV) was administered 15 minutes before anesthesia was induced with propofol (7 mg kg(-1), IV) and maintained with isoflurane (1.8% end-tidal). Acepromazine was not administered in the control treatment. Baseline cardiopulmonary parameters were measured 90 minutes after induction. Thereafter, dopamine was administered intravenously at 5, 10, and 15 mu g kg(-1) minute(-1), with each infusion rate lasting 30 minutes. Cardiopulmonary data were obtained at the end of each infusion rate.Dopamine induced dose-related increases in cardiac index (CI), stroke index, arterial blood pressure, mean pulmonary arterial pressure, oxygen delivery index (DO2I) and oxygen consumption index. In the control treatment, systemic vascular resistance index (SVRI) decreased during administration of 5 and 10 mu g kg(-1) minute(-1) of dopamine and returned to baseline with the highest dose (15 mu g kg (-1) minute(-1)). After acepromazine treatment, SVRI decreased from baseline during dopamine administration, regardless of the infusion rate, and this resulted in a smaller increase in blood pressure at 15 mu g kg (-1) minute(-1). During dopamine infusion hemoglobin concentrations were lower following acepromazine and this contributed to significantly lower arterial O-2 content.Acepromazine prevented the return in SVRI to baseline and reduced the magnitude of the increase in arterial pressure induced by higher doses of dopamine. However, reduced SRVI associated with lower doses of dopamine and the ability of dopamine to increase CI and DO2I were not modified by acepromazine premedication.Previous acepromazine administration reduces the efficacy of dopamine as a vasopressor agent in isoflurane anesthetized dogs. Other beneficial effects of dopamine such as increased CO are not modified by acepromazine.
Resumo:
In the present study we investigated the effect of anteroventral third ventricle (AV3V) lesion on pressor, dipsogenic, natriuretic and kaliuretic responses induced by the injection of carbachol (a cholinergic agonist) into the medial septal area (MSA) of rats. Male rats with sham or AV3V lesion and a stainless-steel cannula implanted into the MSA were used. Carbachol (2 nmol) injected into the MSA in sham lesion rats produced pressor (43 +/- 2 mmHg), dipsogenic (9.6 +/- 1.2 ml/h), natriuretic (531 +/- 82-mu-Eq/120 min) and kaliuretic (164 +/- 14-mu-Eq/120 min) responses. In AV3V-lesioned rats (1-5 days and 14-18 days), the pressor (11 +/- 2 mmHg, respectively), dipsogenic (1.9 +/- 0.7 and 1.4 +/- 0.6 ml/h), natriuretic (21 +/- 5 and 159 +/- 44-mu-Eq/120 min) and kaliuretic (124 +/- 14 and 86 +/- 13-mu-Eq/120 min) responses induced by carbachol injection into the MSA were reduced. These results show that the AV3V region is essential for the pressor, dipsogenic, natriuretic and kaliuretic responses induced by cholinergic activation of the MSA in rats.
Resumo:
Bilateral common carotid occlusion (BCO) over a period of 60 s in conscious rats produces a biphasic presser response, consisting of an early (peak) and late (plateau) phase. In this study we investigated 1) the effects of lesions of the commissural nucleus of the solitary tract (commNTS) on the cardiovascular responses produced by BCO in conscious rats and 2) the autonomic and humoral mechanisms activated to produce the presser response to BCO in sham- and commNTS-lesioned rats. Both the peak and plateau of the presser response produced by BCO increased in commNTS-lesioned rats despite the impairment of chemoreflex responses induced by intravenous potassium cyanide. In sham rats sympathetic blockade with intravenous prazosin and metoprolol, but not vasopressin receptor blockade with the Manning compound, reduced both components of BCO. In commNTS-lesioned rats the sympathetic blockade or vasopressin receptor blockade reduced both components of BCO. The results showed 1) the sympathetic nervous system, but not vasopressin, is important for the presser response to BCO during 60 s in conscious sham rats; 2) in commNTS-lesioned rats, despite chemoreflex impairment, BCO produces an increased presser response dependent on sympathetic activity associated with vasopressin release; and 3) the increment in the presser response to BCO in commNTS-lesioned rats seems to depend only on vasopressin secretion.
Resumo:
In previous studies using bilateral carotid occlusion in conscious freely moving rats we suggested that aortic baroreceptors may play a more important role in the regulation of hindlimb than in renal and mesenteric vascular resistances. In the present study we performed electrical stimulation of the aortic baroreceptor nerve and analyzed the changes in mean arterial pressure and in hindlimb, renal, and mesenteric vascular resistances. All the experiments were performed under urethan anesthesia. Unilateral electrical stimulation (3 V, 2 ms, 50 Hz) of the aortic baroreceptor nerve produced a fall in arterial pressure (-27 +/- 3 mmHg) and an important reduction in hindlimb vascular resistance (-43 +/- 5%), with an increase in renal (+3 +/- 14%) and mesenteric (+48 +/- 12%) vascular resistances. Similar changes in arterial pressure as well as in the resistance of the three vascular beds studied were also observed during electrical stimulation of the aortic baroreceptor nerve in rats with bilateral carotid baroreceptor denervation or in rats treated with methylatropine. The data obtained with electrical stimulation indicated that aortic baroreceptors play a more important role in the regulation of blood flow in hindlimb than in renal and mesenteric vascular beds.
Resumo:
This study investigated the effects of bilateral injections of the local anesthetic, lidocaine, into the lateral parabrachial nucleus (LPBN) on the dipsogenic and presser responses induced by intracerebroventricular (i.c.v.) injection of angiotensin II (ANG II). Centrally injected ANG II (50 ng/l mu l) induced water intake (10.2 +/- 0.8 ml/h) and presser responses (22 +/- 1 mmHg). Prior bilateral injection of 10% lidocaine (200 nl) into the LPBN increased the water intake (14.2 +/- 1.4 ml/h), but did not change the presser response (17 +/- 1 mmHg) to i.c.v. ANG II. Lidocaine alone injected into the LPBN also induced a presser response (23 +/- 3 mmHg). These results showing that bilateral LPBN injection of lidocaine increase water intake induced by i.c.v. ANG II are consistent with electrolytic and neurotoxic lesion studies and suggest that the LPBN is associated with inhibitory mechanisms controlling water intake induced by ANG II. These results also provide evidence that it is feasible to reversibly anesthetize this brain area to facilitate fluid-related ingestive behavior.
Resumo:
This study investigated the effects of bilateral injections of serotonergic receptor ligands into the lateral parabrachial nucleus (LPBN) on the presser and dipsogenic responses induced by intracerebroventricular (icv) injection of angiotensin II (ANG II). Rats with stainless steel cannulas implanted bilaterally into the LPBN and into the left lateral ventricle were used to study icy ANG II-induced water intake and presser responses. Pretreatment with the serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (1-8 mu g/200 nl) bilaterally injected into the LPBN increased the water intake induced by icv ANG II (50 ng/mu l) administered via the lateral ventricle, but pretreatment with methysergide (4 mu g/200 nl) did not change the presser response produced by icy ANG II. After bilateral injection of either serotonin (5-HT, 5 mu g/200 nl) or the serotonergic 5-HT2a/5-HT2c receptor agonist (+/-)-2,5-dimetoxy-4-iodoamphetamine hydrochloride (DOI; 0.5-10 mu g/200 nl) into the LPBN, the water intake induced by ANG II was significantly reduced. These results are consistent with other observations indicating that the LPBN is associated with inhibitory mechanisms controlling water intake induced by ANG II treatment and suggest that serotonergic pathways may be involved in this effect.
Resumo:
In this study we investigated the influence of electrolytic lesion or of opioid agonist injections into the lateral hypothalamus (LH) on the dipsogenic, natriuretic, kaliuretic, antidiuretic, presser, and bradycardic effects of cholinergic stimulation of the medial septal area (MSA) in rats. Sham- and LH-lesioned male Holtzman rats received a stainless steel cannula implanted into the LH. Other groups of rats had cannulas implanted simultaneously into the MSA and LH. Carbachol (2 nmol) injection into the MSA induced water intake, presser, and bradycardic responses. LH lesion reduced all of these effects (1-3 and 15-18 days). Previous injection of synthetic opiate agonist, FK-33824 (100 ng), into the LH reduced the water intake, natriuresis, kaliuresis, and presser responses induced by carbachol injected into the MSA. These data show that both electrolytic lesion or injection of an opiate agonist in the LH reduces the fluid-electrolyte and cardiovascular responses to cholinergic activation of the MSA. The involvement of LH with central excitatory and inhibitory mechanisms related to fluid-electrolytic and cardiovascular control is suggested.
Resumo:
Adult male rats (n = 5-7 per group) were water deprived for 24 h with only food available. Then they had access to water for 2 h. At the end of the 2 h, 1.5% NaCl was offered to the animals and the intake was measured for another 2 h. The rats drank an average of 9.8 +/- 3.0 ml/120 min of 1.5% NaCl; water intake during this time was negligible (not more than 1.0 ml/120 min). Captopril injected IP at the doses of 12 and 24 mg/kg induced 60-90% inhibition of the intake. Losartan or PD123319 injected ICV induced 50-80% inhibition of the intake. Losartan (80 nmol) inhibited the intake at a lower dose than PD123319 (160 nmol). Neither losartan nor PD123319 inhibited 10% sucrose intake. The inhibition of 1.5% NaCl intake was not related to alterations in arterial pressure. The results show that the antagonism of the renin-angiotensin system inhibits the 1.5% NaCl intake induced by water deprivation. The inhibition induced by the angiotensin II antagonists suggest that this peptide is important for the control of salt intake induced by water deprivation.
Resumo:
In the present study, noradrenaline (NOR, alpha-non-specific adrenergic agonist), clonidine (CLO, alpha(2)), phenylephrine (PHE, alpha(1)) or isoproterenol (ISO, beta-agonist) was injected in the medial septal area (MSA) of water-deprived, sodium-deplete or food-deprived rats. NOR (80, 160 nmol) inhibited the intake of 3% NaCl, water deprivation-induced and meal-associated water intake. Food deprivation-induced food intake and 10% sucrose intake were not altered by NOR. CLO (10, 20, 30, 40 nmol) inhibited (80-100% inhibition compared to control during 60 min) the intake of 3% NaCl, water deprivation-induced and meal-associated water intake. CLO had a weaker inhibition on food and 10% sucrose intake (30-50% less than the control during 60 and 15 min, respectively). PHE (160 nmol) inhibited 3% NaCl intake and 10% sucrose intake (30% less than the control for 15-30 min). ISO (160 nmol) did not after water or 3% NaCl intake. NOR induced an increase, CLO and ISO induced a decrease, and PHE no alteration in mean arterial pressure. NOR did not alter water or 3% NaCl intake when injected unilaterally into the caudate nucleus. The results suggest that NOR injected in the MSA acts on alpha(2)-adrenergic receptors inducing a specific inhibition of 3% NaCl and water intake. (C) 1997 Elsevier B.V.