915 resultados para measurement error model
Resumo:
Estimating the magnitude of Agulhas leakage, the volume flux of water from the Indian to the Atlantic Ocean, is difficult because of the presence of other circulation systems in the Agulhas region. Indian Ocean water in the Atlantic Ocean is vigorously mixed and diluted in the Cape Basin. Eulerian integration methods, where the velocity field perpendicular to a section is integrated to yield a flux, have to be calibrated so that only the flux by Agulhas leakage is sampled. Two Eulerian methods for estimating the magnitude of Agulhas leakage are tested within a high-resolution two-way nested model with the goal to devise a mooring-based measurement strategy. At the GoodHope line, a section halfway through the Cape Basin, the integrated velocity perpendicular to that line is compared to the magnitude of Agulhas leakage as determined from the transport carried by numerical Lagrangian floats. In the first method, integration is limited to the flux of water warmer and more saline than specific threshold values. These threshold values are determined by maximizing the correlation with the float-determined time series. By using the threshold values, approximately half of the leakage can directly be measured. The total amount of Agulhas leakage can be estimated using a linear regression, within a 90% confidence band of 12 Sv. In the second method, a subregion of the GoodHope line is sought so that integration over that subregion yields an Eulerian flux as close to the float-determined leakage as possible. It appears that when integration is limited within the model to the upper 300 m of the water column within 900 km of the African coast the time series have the smallest root-mean-square difference. This method yields a root-mean-square error of only 5.2 Sv but the 90% confidence band of the estimate is 20 Sv. It is concluded that the optimum thermohaline threshold method leads to more accurate estimates even though the directly measured transport is a factor of two lower than the actual magnitude of Agulhas leakage in this model.
Resumo:
The relationship between acrylamide and its precursors, namely, free asparagine and reducing sugars, was studied in cakes made from potato flake, wholemeal wheat, and wholemeal rye, cooked at 180 degreesC, from 5 to 60 min. Between 5 and 20 min, major losses of asparagine, water, and total reducing sugars were accompanied by large increases in acrylamide, which maximized in all three products between 25 and 30 min, followed by a slow linear reduction. Acrylamide formation did not occur to a large degree until the moisture contents of the cakes fell below 5%. Linear relationships were observed for acrylamide formation with the residual levels of asparagine and reducing sugars for all three food materials.
Resumo:
In this paper, we generalise a previously-described model of the error-prone polymerase chain reaction (PCR) reaction to conditions of arbitrarily variable amplification efficiency and initial population size. Generalisation of the model to these conditions improves the correspondence to observed and expected behaviours of PCR, and restricts the extent to which the model may explore sequence space for a prescribed set of parameters. Error-prone PCR in realistic reaction conditions is predicted to be less effective at generating grossly divergent sequences than the original model. The estimate of mutation rate per cycle by sampling sequences from an in vitro PCR experiment is correspondingly affected by the choice of model and parameters. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A 24-member ensemble of 1-h high-resolution forecasts over the Southern United Kingdom is used to study short-range forecast error statistics. The initial conditions are found from perturbations from an ensemble transform Kalman filter. Forecasts from this system are assumed to lie within the bounds of forecast error of an operational forecast system. Although noisy, this system is capable of producing physically reasonable statistics which are analysed and compared to statistics implied from a variational assimilation system. The variances for temperature errors for instance show structures that reflect convective activity. Some variables, notably potential temperature and specific humidity perturbations, have autocorrelation functions that deviate from 3-D isotropy at the convective-scale (horizontal scales less than 10 km). Other variables, notably the velocity potential for horizontal divergence perturbations, maintain 3-D isotropy at all scales. Geostrophic and hydrostatic balances are studied by examining correlations between terms in the divergence and vertical momentum equations respectively. Both balances are found to decay as the horizontal scale decreases. It is estimated that geostrophic balance becomes less important at scales smaller than 75 km, and hydrostatic balance becomes less important at scales smaller than 35 km, although more work is required to validate these findings. The implications of these results for high-resolution data assimilation are discussed.
Resumo:
Assimilation of temperature observations into an ocean model near the equator often results in a dynamically unbalanced state with unrealistic overturning circulations. The way in which these circulations arise from systematic errors in the model or its forcing is discussed. A scheme is proposed, based on the theory of state augmentation, which uses the departures of the model state from the observations to update slowly evolving bias fields. Results are summarized from an experiment applying this bias correction scheme to an ocean general circulation model. They show that the method produces more balanced analyses and a better fit to the temperature observations.
Resumo:
Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness of the new procedure.
Resumo:
We show that the four-dimensional variational data assimilation method (4DVar) can be interpreted as a form of Tikhonov regularization, a very familiar method for solving ill-posed inverse problems. It is known from image restoration problems that L1-norm penalty regularization recovers sharp edges in the image more accurately than Tikhonov, or L2-norm, penalty regularization. We apply this idea from stationary inverse problems to 4DVar, a dynamical inverse problem, and give examples for an L1-norm penalty approach and a mixed total variation (TV) L1–L2-norm penalty approach. For problems with model error where sharp fronts are present and the background and observation error covariances are known, the mixed TV L1–L2-norm penalty performs better than either the L1-norm method or the strong constraint 4DVar (L2-norm)method. A strength of the mixed TV L1–L2-norm regularization is that in the case where a simplified form of the background error covariance matrix is used it produces a much more accurate analysis than 4DVar. The method thus has the potential in numerical weather prediction to overcome operational problems with poorly tuned background error covariance matrices.
Resumo:
It has long been supposed that preference judgments between sets of to-be-considered possibilities are made by means of initially winnowing down the most promising-looking alternatives to form smaller “consideration sets” (Howard, 1963; Wright & Barbour, 1977). In preference choices with >2 options, it is standard to assume that a “consideration set”, based upon some simple criterion, is established to reduce the options available. Inferential judgments, in contrast, have more frequently been investigated in situations in which only two possibilities need to be considered (e.g., which of these two cities is the larger?) Proponents of the “fast and frugal” approach to decision-making suggest that such judgments are also made on the basis of limited, simple criteria. For example, if only one of two cities is recognized and the task is to judge which city has the larger population, the recognition heuristic states that the recognized city should be selected. A multinomial processing tree model is outlined which provides the basis for estimating the extent to which recognition is used as a criterion in establishing a consideration set for inferential judgments between three possible options.
Resumo:
Mesospheric temperature inversions are well established observed phenomena, yet their properties remain the subject of ongoing research. Comparisons between Rayleigh-scatter lidar temperature measurements obtained by the University of Western Ontario's Purple Crow Lidar (42.9°N, 81.4°W) and the Canadian Middle Atmosphere Model are used to quantify the statistics of inversions. In both model and measurements, inversions occur most frequently in the winter and exhibit an average amplitude of ∼10 K. The model exhibits virtually no inversions in the summer, while the measurements show a strongly reduced frequency of occurrence with an amplitude about half that in the winter. A simple theory of mesospheric inversions based on wave saturation is developed, with no adjustable parameters. It predicts that the environmental lapse rate must be less than half the adiabatic lapse rate for an inversion to form, and it predicts the ratio of the inversion amplitude and thickness as a function of environmental lapse rate. Comparison of this prediction to the actual amplitude/thickness ratio using the lidar measurements shows good agreement between theory and measurements.
Resumo:
The observation-error covariance matrix used in data assimilation contains contributions from instrument errors, representativity errors and errors introduced by the approximated observation operator. Forward model errors arise when the observation operator does not correctly model the observations or when observations can resolve spatial scales that the model cannot. Previous work to estimate the observation-error covariance matrix for particular observing instruments has shown that it contains signifcant correlations. In particular, correlations for humidity data are more significant than those for temperature. However it is not known what proportion of these correlations can be attributed to the representativity errors. In this article we apply an existing method for calculating representativity error, previously applied to an idealised system, to NWP data. We calculate horizontal errors of representativity for temperature and humidity using data from the Met Office high-resolution UK variable resolution model. Our results show that errors of representativity are correlated and more significant for specific humidity than temperature. We also find that representativity error varies with height. This suggests that the assimilation scheme may be improved if these errors are explicitly included in a data assimilation scheme. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.