954 resultados para machine tool


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Toolbox, combined with MATLAB ® and a modern workstation computer, is a useful and convenient environment for investigation of machine vision algorithms. For modest image sizes the processing rate can be sufficiently ``real-time'' to allow for closed-loop control. Focus of attention methods such as dynamic windowing (not provided) can be used to increase the processing rate. With input from a firewire or web camera (support provided) and output to a robot (not provided) it would be possible to implement a visual servo system entirely in MATLAB. Provides many functions that are useful in machine vision and vision-based control. Useful for photometry, photogrammetry, colorimetry. It includes over 100 functions spanning operations such as image file reading and writing, acquisition, display, filtering, blob, point and line feature extraction, mathematical morphology, homographies, visual Jacobians, camera calibration and color space conversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses: -The need for law schools to use curriculum as a site for positive interventions to support student psychological well-being. -The potential for law school interventions to impact on the psychological well-being of the profession. -Reflective practice as a possible tool for promoting psychological well-being in law school and the profession because it provides a way of coping with ‘indeterminate zones’ of experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Monte Carlo DICOM Tool-Kit (MCDTK) is a software suite designed for treatment plan dose verification, using the BEAMnrc and DOSXYZnrc Monte Carlo codes. MCDTK converts DICOM-format treatment plan information into Monte Carlo input files and compares the results of Monte Carlo treatment simulations with conventional treatment planning dose calculations. In this study, a treatment is planned using a commercial treatment planning system, delivered to a pelvis phantom containing ten thermoluminescent dosimeters and simulated using BEAMnrc and DOSXYZnrc using inputs derived from MCDTK. The dosimetric accuracy of the Monte Carlo data is then evaluated via comparisons with the dose distribution obtained from the treatment planning system as well as the in-phantom point dose measurements. The simulated beam arrangement produced by MCDTK is found to be in geometric agreement with the planned treatment. An isodose display generated from the Monte Carlo data by MCDTK shows general agreement with the isodose display obtained from the treatment planning system, except for small regions around density heterogeneities in the phantom, where the pencil-beam dose calculation performed by the treatment planning systemis likely to be less accurate. All point dose measurements agree with the Monte Carlo data obtained using MCDTK, within confidence limits, and all except one of these point dose measurements show closer agreement with theMonte Carlo data than with the doses calculated by the treatment planning system. This study provides a simple demonstration of the geometric and dosimetric accuracy ofMonte Carlo simulations based on information from MCDTK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the affordances of the work diary as a data collection tool for both pilot studies and qualitative research of social interactions. Observation is the cornerstone of many qualitative, ethnographic research projects (Creswell, 2008). However, determining through observation, the activities of busy school teams could be likened to joining dots of a child’s drawing activity to reveal a complex picture of interactions. Teachers, leaders and support personnel are in different locations within a school, performing diverse tasks for a variety of outcomes, which hopefully achieve a common goal. As a researcher, the quest to observe these busy teams and their interactions with each other was daunting and perhaps unrealistic. The decision to use a diary as part of a wider research project was to overcome the physical impossibility of simultaneously observing multiple team members. One reported advantage of the use of the diary in research was its suitability as a substitute for lengthy researcher observation, because multiple data sets could be collected at once (Lewis et al, 2005; Marelli, 2007).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progression of spinal deformity is traditionally monitored on hard copy radiographs using the Cobb method with a protractor and pencil. The rotation of the spine and ribcage (rib hump) in scoliosis is measured with a hand-held inclinometer/Scoliometer. The iPhone and other smart phones, can accurately sense inclination, and can therefore be used to measure Cobb angles and rib hump angulation. The purpose of this study was to quantify the performance of the iPhone compared to the standard protractor (Cobb angles) and the Scoliometer (rib hump).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Material for this paper comes from as report commissioned by the Department of Family Services, Aboriginal and Islander Affairs. The report is the result of a multi strategy research project designed to assess the impact of gaming machines on the fundraising capacity of charitable and community organisations in Queensland. The study was conducted during the 1993 calendar year. The first Queensland gaming machine was commissioned on the 11 February, 1992 at 11.30 am in Brisbane at the Kedron Wavell Services Club. Eighteen more clubs followed that week. Six months later there were gaming machines in 335 clubs, and 250 hotels and taverns, representing a state wide total of 7,974 machines in operation. The 10,000 gaming machine was commissioned on the 18 March, 1993 and the 1,000 operational gaming machine site was opened on 18th February, 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the development and implementation of a self-report risk assessment tool that was developed in an attempt to increase the efficacy of crash prediction within Australian fleet settings. This study forms a part of a broader program of research into work related road safety and identification of driving risk. The first phase of the study involved a series of focus groups being conducted with 217 professional drivers which revealed that the following factors were proposed to influence driving performance: Fatigue, Knowledge of risk, Mood, Impatience and frustration, Speed limits, Experience, Other road users, Passengers, Health, and Culture. The second phase of the study involved piloting the newly developed 38 item Driving Risk Assessment Scale - Work Version (DRAS-WV) with 546 professional drivers. Factor analytic techniques identified a 9 factor solution that was comprised of speeding, aggression, time pressure, distraction, casualness, awareness, maintenance, fatigue and minor damage. Speeding and aggressive driving manoeuvres were identified to be the most frequent aberrant driving behaviours engaged in by the sample. However, a series of logistic regression analyses undertaken to determine the DRAS-WV scale’s ability to predict self-reported crashes revealed limited predictive efficacy e.g., 10% of crashes. This paper outlines proposed reasons for this limited predictive ability of the DRAS-WV as well as provides suggestions regarding the future of research that aims to develop methods to identify “at risk” drivers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improving energy efficiency has become increasingly important in data centers in recent years to reduce the rapidly growing tremendous amounts of electricity consumption. The power dissipation of the physical servers is the root cause of power usage of other systems, such as cooling systems. Many efforts have been made to make data centers more energy efficient. One of them is to minimize the total power consumption of these servers in a data center through virtual machine consolidation, which is implemented by virtual machine placement. The placement problem is often modeled as a bin packing problem. Due to the NP-hard nature of the problem, heuristic solutions such as First Fit and Best Fit algorithms have been often used and have generally good results. However, their performance leaves room for further improvement. In this paper we propose a Simulated Annealing based algorithm, which aims at further improvement from any feasible placement. This is the first published attempt of using SA to solve the VM placement problem to optimize the power consumption. Experimental results show that this SA algorithm can generate better results, saving up to 25 percentage more energy than First Fit Decreasing in an acceptable time frame.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.