800 resultados para lower exercise capacity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aging is associated with increased circulating pro-inflammatory and lower anti-inflammatory cytokines. Exercise training, in addition to improving muscle function, reduces these circulating pro-inflammatory cytokines. Yet, few studies have evaluated changes in the expression of cytokines within skeletal muscle after exercise training. The aim of the current study was to examine the expression of cytokines both at rest and following a bout of isokinetic exercise performed before and after 12 weeks of resistance exercise training in young (n = 8, 20.3 ± 0.8 yr) and elderly men (n = 8, 66.9 ± 1.6 yr). Protein expression of various cytokines was determined in muscle homogenates. The expression of MCP-1, IL-8 and IL-6 (which are traditionally classified as ‘pro-inflammatory’) increased substantially after acute exercise. By contrast, the expression of the anti-inflammatory cytokines IL-4, IL-10 and IL-13 increased only slightly (or not at all) after acute exercise. These responses were not significantly different between young and elderly men, either before or after 12 weeks of exercise training. However, compared with the young men, the expression of pro-inflammatory cytokines 2 h post exercise tended to be greater in the elderly men prior to training. Training attenuated this difference. These data suggest that the inflammatory response to unaccustomed exercise increases with age. Furthermore, regular exercise training may help to normalize this inflammatory response, which could have important implications for muscle regeneration and adaptation in the elderly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current military conflicts are characterized by the use of the improvised explosive device. Improvements in personal protection, medical care, and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to lifelong disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centers following a terrorist attack. Key to understanding such mechanisms of injury is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this article, a traumatic injury simulator, designed to recreate in the laboratory the impulse that is transferred to the lower extremity from an anti-vehicle explosion, is presented and characterized experimentally and numerically. Tests with instrumented cadaveric limbs were then conducted to assess the simulator’s ability to interact with the human in two mounting conditions, simulating typical seated and standing vehicle passengers. This experimental device will now allow us to (a) gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) characterize the dissipating capacity of mitigation technologies, and (c) assess the bio-fidelity of surrogates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cough associated with exertion is often used as a surrogate marker of asthma. However, to date there are no studies that have objectively measured cough in association with exercise in children. Our primary aim was to examine whether children with a pre-existing cough have an increase in cough frequency during and post-exercise. We hypothesized that children with any coughing illness will have an increase in cough frequency post-exercise regardless of the presence of exercise-induced broncho-constriction (EIB) or atopy. In addition, we hypothesized that Fractional exhaled nitric oxide (FeNO) levels decreases post-exercise regardless of the presence of EIB or atopy. Children with chronic cough and a control group without cough undertook an exercise challenge, FeNO measurements and a skin prick test, and wore a 24-h voice recorder to objectively measure cough frequency. The association between recorded cough frequency, exercise, atopy, and presence of EIB was tested. We also determined if the change in FeNO post exercise related to atopy or EIB. Of the 50 children recruited (35 with cough, 15 control), 7 had EIB. Children with cough had a significant increase in cough counts (median 7.0, inter-quartile ranges, 0.5, 24.5) compared to controls (2.0, IQR 0, 5.0, p = 0.028) post-exercise. Presence of atopy or EIB did not influence cough frequency. FeNO level was significantly lower post-exercise in both groups but the change was not influenced by atopy or EIB. Cough post-exertion is likely a generic response in children with a current cough. FeNO level decreases post-exercise irrespective of the presence of atopy or EIB. A larger study is necessary confirm or refute our findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to examine the effect of endurance training on skeletal muscle phospholipid molecular species from high-fat fed rats. Twelve female Sprague-Dawley rats were fed a high-fat diet (78.1% energy). The rats were randomly divided into two groups, a sedentary control group and a trained group (125 min of treadmill running at 8 m/min, 4 days/wk for 4 weeks). Forty-eight hours after their last training bout phospholipids were extracted from the red and white vastus lateralis and analyzed by electrospray-ionization mass spectrometry. Exercise training was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in red vastus lateralis than white vastus lateralis. The largest observed change was an increase of similar to 30% in the abundance of 1-palmitoyl-2-linoleoyl phosphatidylcholine ions in oxidative fibers. Reductions in the relative abundance of a number of phospholipids containing long-chain n-3 polyunsaturated fatty acids were also observed. These data suggest a possible reduction in phospholipid remodeling in the trained animals. This results in a decrease in the phospholipid n-3 to n-6 ratio that may in turn influence endurance capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the avian model of myopia, retinal image degradation quickly leads to ocular enlargement. We now give evidence that regionally specific changes in ocular size are correlated with both biomechanical indices of scleral remodeling, e.g. hydration capacity and with biochemical changes in proteinase activities. The latter include a 72 kDa matrix metalloproteinase (putatively MMP-2), other gelatin-binding MMPs, an acid pH MMP and a serine protease. Specifically, we have found that increases in scleral hydrational capacity parallel increases in collagen degrading activities. Gelatin zymography reveals that eyes with 7 days of retinal image degradation have elevated levels (1.4-fold) of gelatinolytic activities at 72 and 67 kDa M(r) in equatorial and posterior pole regions of the sclera while, after 14 days of treatment, increases are no longer apparent. Lower M(r) zymographic activities at 50, 46 and 37 kDa M(r) are collectively increased in eyes treated for both 7 and 14 days (1.4- and 2.4-fold respectively) in the equator and posterior pole areas of enlarging eyes. Western blot analyses of scleral extracts with an antibody to human MMP-2 reveals immunoreactive bands at 65, 30 and 25 kDa. Zymograms incubated under slightly acidic conditions reveal that, in enlarging eyes, MMP activities at 25 and 28 kDa M(r) are increased in scleral equator and posterior pole (1.6- and 4.5-fold respectively). A TIMP-like protein is also identified in sclera and cornea by Western blot analysis. Finally, retinal-image degradation also increases (~2.6-fold) the activity of a 23.5 kDa serine proteinase in limbus, equator and posterior pole sclera that is inhibited by aprotinin and soybean trypsin inhibitor. Taken together, these results indicate that eye growth induced by retinal-image degradation involves increases in the activities of multiple scleral proteinases that could modify the biomechanical properties of scleral structural components and contribute to tissue remodeling and growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lack of physical activity and low levels of physical fitness are thought to be contributing factors to the high prevalence of obesity in African-American girls, To examine this hypothesis, we compared habitual physical activity and physical fitness in 54 African-American girls with obesity and 96 African-American girls without obesity residing in rural South Carolina, Participation in vigorous (greater than or equal to 6 METs) (VPA) or moderate and vigorous physical activity (greater than or equal to 4 METs) (MVPA) was assessed on three consecutive days using the Previous Day Physical Activity Recall, Cardiorespiratory fitness was assessed using the PWC 170 cycle ergometer test, Upper body strength was determined at two sites via isometric cable tensiometer tests, Relative to their counterparts without obesity, girls with obesity reported significantly fewer 30-minute blocks of VPA (0.90 +/- 0.14 vs. 1.3 +/- 0.14) and MVPA (1.2 +/- 0.18 vs. 1.7 +/- 0.16) (p<0.01), Within the entire sample, VPA and MVPA were inversely associated with body mass index (r=-0.17 and r=-0.19) and triceps skinfold thickness (r=-0.19 and r=-0.22) (p<0.05), In the PWC 170 test and isometric strength tests, girls with obesity demonstrated absolute scores that were similar to, or greater than, those of girls without obesity; however, when scores were expressed relative to bodyweight, girls with obesity demonstrated significantly lower values (p<0.05). The results support the hypothesis that lack of physical activity and low physical fitness are important contributing factors in the development and/or maintenance of obesity in African-American girls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One in eight women living in developed countries will be diagnosed with breast cancer before the age of 85, with the mean age at first diagnosis approximately 60 years. Stage I represents just under 50% of diagnoses, while 45% of cases are diagnosed at later stages (stages II to IV; the remainder being unknown stage). Breast cancer continues to be the most common cause of cancer-related deaths in women , and although survival for women with stage I disease is high (98% 5-year relative survival), survival is significantly lower for those diagnosed with more advanced disease stage (i.e., stages II to IV, 83%; an unknown stage, 50%) .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To examine the relationship between pubertal timing and physical activity. Study design A longitudinal sample of 143 adolescent girls was assessed at ages 11 and 13 years. Girls' pubertal development was assessed at age 11 with blood estradiol levels, Tanner breast staging criteria, and parental report of pubertal development. Girls were classified as early maturers (n = 41) or later maturers (n = 102) on the basis of their scores on the 3 pubertal development measures. Dependent variables measured at age 13 were average minutes/day of moderate to vigorous and vigorous physical activity as measured by the ActiGraph accelerometer. Results Early-maturing girls had significantly lower self-reported physical activity and accumulated fewer minutes of moderate to vigorous and vigorous physical activity and accelerometer counts per day at age 13 than later maturing girls. These effects v.-ere independent of differences in percentage body fat and self-reported physical activity at age 11. Conclusion Girls experiencing early pubertal maturation at age 11 reported lower subsequent physical activity at age 13 than their later maturing peers. Pubertal maturation, in particular early maturation relative to peers, may lead to declines in physical activity among adolescent girls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fatty acid methyl ester (FAME) profiles, together with Biolog substrate utilization patterns, were used in conjunction with measurements of other soil chemical and microbiological properties to describe differences in soil microbial communities induced by increased salinity and alkalinity in grass/legume pastures at three sites in SE South Australia. Total ester-linked FAMEs (EL-FAMEs) and phospholipid-linked FAMEs (PL-FAMEs), were also compared for their ability to detect differences between the soil microbial communities. The level of salinity and alkalinity in affected areas of the pastures showed seasonal variation, being greater in summer than in winter. At the time of sampling for the chemical and microbiological measurements (winter) only the affected soil at site 1 was significantly saline. The affected soils at all three sites had lower organic C and total N concentrations than the corresponding non-affected soils. At site 1 microbial biomass, CO 2-C respiration and the rate of cellulose decomposition was also lower in the affected soil compared to the non-affected soil. Biomarker fatty acids present in both the EL- and PL-FAME profiles indicated a lower ratio of fungal to bacterial fatty acids in the saline affected soil at site 1. Analysis of Biolog substrate utilization patterns indicated that the bacterial community in the affected soil at site 1 utilized fewer carbon substrates and had lower functional diversity than the corresponding community in the non-affected soil. In contrast, increased alkalinity, of major importance at sites 2 and 3, had no effect on microbial biomass, the rate of cellulose decomposition or functional diversity but was associated with significant differences in the relative amounts of several fatty acids in the PL-FAME profiles indicative of a shift towards a bacterial dominated community. Despite differences in the number and relative amounts of fatty acids detected, principal component analysis of the EL- and PL-FAME profiles were equally capable of separating the affected and non-affected soils at all three sites. Redundancy analysis of the FAME data showed that organic C, microbial biomass, electrical conductivity and bicarbonate-extractable P were significantly correlated with variation in the EL-FAME profiles, whereas pH, electrical conductivity, NH 4-N, CO 2-C respiration and the microbial quotient were significantly correlated with variation in the PL-FAME profiles. Redundancy analysis of the Biolog data indicated that cation exchange capacity and bicarbonate-extractable K were significantly correlated with the variation in Biolog substrate utilization patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying railway capacity is an important task that can identify "in principal" whether the network can handle an intended traffic flow, and whether there is any free capacity left for additional train services. Capacity determination techniques can also be used to identify how best to improve an existing network, and at least cost. In this article an optimization approach has been applied to a case study of the Iran national railway, in order to identify its current capacity and to optimally expand it given a variety of technical conditions. This railway is very important in Iran and will be upgraded extensively in the coming years. Hence the conclusions in this article may help in that endeavor. A sensitivity analysis is recommended to evaluate a wider range of possible scenarios. Hence more useful lower and upper bounds can be provided for the performance of the system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The myofibrillar protein synthesis (MPS) response to resistance exercise (REX) and protein ingestion during energy deficit (ED) is unknown. We determined, in young men (n=8) and women (n=7), protein signaling, resting post-absorptive MPS during energy balance [EB: 45 kcal∙(kg FFM∙d)-1] and after 5d of ED [30 kcal∙(kg FFM∙d)-1] as well as MPS while in ED after acute REX in the fasted state and with the ingestion of whey protein (15 and 30 g). Post-absorptive rates of MPS were 27% lower in ED than EB (P<0.001), but REX stimulated MPS to rates equal to EB. Ingestion of 15 and 30 g of protein after REX in ED increased MPS ~16 and ~34% above resting EB, (P<0.02). p70 S6Kthr389 phosphorylation increased above EB only with combined exercise and protein intake (~2-7 fold; P<0.05). In conclusion, short-term ED reduces post-absorptive MPS, however, a bout of REX in ED restores MPS to values observed at rest in EB. The ingestion of protein after REX further increases MPS above resting EB in a dose-dependent manner. We conclude that combining REX with increased protein availability after exercise enhances rates of skeletal muscle protein synthesis during short term ED and could, in the long term, preserve muscle mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Exercise has the potential to offer a range of health benefits in addition to improving healing outcomes for people with venous leg ulcers. However despite evidence based recommendations, most of these individuals do not engage in regular exercise. The aim of this study was to gain an understanding of the perspectives of adults with venous leg ulcers, in relation to exercise. Method This was a qualitative design using semi-structured interviews and discussions. Ten participants with venous leg ulceration volunteered to participate. Recruitment was through a specialist wound clinic. Verbatim data were collected by an experienced moderator using a semi-structured guide. Data saturation was reached after three group discussions and two interviews. A random selection of transcripts was sent back to the participants for verification. Thematic content analysis was used to determine major themes and categories. Two transcripts were independently analysed, categories and themes independently developed, cross checked and found comparable. Remaining transcripts were analysed using developed categories and codes. Results Regardless of their current exercise routine, participants reported exercising prior to venous leg ulceration and expressed an interest in either becoming active or maintaining an active lifestyle. Overall four themes emerged from the findings: i) participant understanding of the relationship between chronic venous insufficiency and exercise patterns, ii) fear of harm impacts upon positive beliefs and attitudes to exercise, iii) perceived factors limit exercise and iv) structured management facilitates exercise. Conclusion The value of exercise in improving outcomes in venous leg ulcers lies in its capacity to promote venous return and reduce the risk of secondary conditions in this population. Despite motivation and interest in being exercise active, people with venous leg ulcers report many obstacles. Further exploration of mechanisms that assist this patient population and promote understanding about management of barriers, coupled with promotion of enabling factors is vital for improving their exercise participation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IN MANY FACTORIES, the feed chute of the first mill is operated with a high chute level for the purpose of maximising the cane rate through the mill. There is a trend towards trying to control chute level within a small control range near the top of a chute that can result in rapid changes in cane feeding rate to maintain the chute level set point. This paper reviews the theory that predicts higher cane rate with higher chute level and discusses the main weakness in the theory that it does not consider the beneficial effect on capacity of cane falling from the top of the chute to the top surface of the cane mat. An extension to the chute theory model is described that predicts higher capacity with lower chute level because of the effect of the falling cane. The original model and this extended model are believed to be the upper and lower limits to the true effect. The paper reports an experiment that measured the real effect of chute level on capacity and finds that increasing chute level does lead to higher capacity but that the trend is only about one-third as strong as the original theory predicted. The paper questions whether the benefits of slightly greater capacity outweigh the costs of operating with the small control range near the top of the chute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses following high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise, followed by one of two recovery interventions: 10 min of cold water immersion at 10°C, or 10 min active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 h and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during six sets of 10 squats at 80% 1RM. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, the participants lifted a greater load (p<0.05; 38%; Cohen’s d 1.3) following CWI compared with active recovery. During CWI, muscle temperature decreased 6°C below post-exercise values, and remained below pre-exercise values for another 35 min. Venous blood O2 saturation decreased below pre-exercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma interleukin-6 concentration was higher after CWI compared with active recovery. These results suggest that cold water immersion after resistance exercise allow athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher (P = 0.037; 20%), whereas fat oxidation was lower (P = 0.037; −47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose (P = 0.024; 20%) and lactate (P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different (P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone (P = 0.019), cortisol (P < 0.01), and growth hormone (P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine (P = 0.11) and interleukin-6 (P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD (P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.