868 resultados para integer linear programming
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a mixed-integer convex-optimization-based approach for optimum investment reactive power sources in transmission systems. Unlike some convex-optimization techniques for the reactive power planning solution, in the proposed approach the taps settings of under-load tap-changing of transformers are modeled as a mixed-integer linear set equations. Are also considered the continuous and discrete variables for the existing and new capacitive and reactive power sources. The problem is solved for three significant demand scenarios (low demand, average demand and peak demand). Numerical results are presented for the CIGRE-32 electric power system.
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This work addresses the solution to the problem of robust model predictive control (MPC) of systems with model uncertainty. The case of zone control of multi-variable stable systems with multiple time delays is considered. The usual approach of dealing with this kind of problem is through the inclusion of non-linear cost constraint in the control problem. The control action is then obtained at each sampling time as the solution to a non-linear programming (NLP) problem that for high-order systems can be computationally expensive. Here, the robust MPC problem is formulated as a linear matrix inequality problem that can be solved in real time with a fraction of the computer effort. The proposed approach is compared with the conventional robust MPC and tested through the simulation of a reactor system of the process industry.
A farm-level programming model to compare the atmospheric impact of conventional and organic farming
Resumo:
A model is developed to represent the activity of a farm using the method of linear programming. Two are the main components of the model, the balance of soil fertility and the livestock nutrition. According to the first, the farm is supposed to have a total requirement of nitrogen, which is to be accomplished either through internal sources (manure) or through external sources (fertilisers). The second component describes the animal husbandry as having a nutritional requirement which must be satisfied through the internal production of arable crops or the acquisition of feed from the market. The farmer is supposed to maximise total net income from the agricultural and the zoo-technical activities by choosing one rotation among those available for climate and acclivity. The perspective of the analysis is one of a short period: the structure of the farm is supposed to be fixed without possibility to change the allocation of permanent crops and the amount of animal husbandry. The model is integrated with an environmental module that describes the role of the farm within the carbon-nitrogen cycle. On the one hand the farm allows storing carbon through the photosynthesis of the plants and the accumulation of carbon in the soil; on the other some activities of the farm emit greenhouse gases into the atmosphere. The model is tested for some representative farms of the Emilia-Romagna region, showing to be capable to give different results for conventional and organic farming and providing first results concerning the different atmospheric impact. Relevant data about the representative farms and the feasible rotations are extracted from the FADN database, with an integration of the coefficients from the literature.
Resumo:
The use of linear programming in various areas has increased with the significant improvement of specialized solvers. Linear programs are used as such to model practical problems, or as subroutines in algorithms such as formal proofs or branch-and-cut frameworks. In many situations a certified answer is needed, for example the guarantee that the linear program is feasible or infeasible, or a provably safe bound on its objective value. Most of the available solvers work with floating-point arithmetic and are thus subject to its shortcomings such as rounding errors or underflow, therefore they can deliver incorrect answers. While adequate for some applications, this is unacceptable for critical applications like flight controlling or nuclear plant management due to the potential catastrophic consequences. We propose a method that gives a certified answer whether a linear program is feasible or infeasible, or returns unknown'. The advantage of our method is that it is reasonably fast and rarely answers unknown'. It works by computing a safe solution that is in some way the best possible in the relative interior of the feasible set. To certify the relative interior, we employ exact arithmetic, whose use is nevertheless limited in general to critical places, allowing us to rnremain computationally efficient. Moreover, when certain conditions are fulfilled, our method is able to deliver a provable bound on the objective value of the linear program. We test our algorithm on typical benchmark sets and obtain higher rates of success compared to previous approaches for this problem, while keeping the running times acceptably small. The computed objective value bounds are in most of the cases very close to the known exact objective values. We prove the usability of the method we developed by additionally employing a variant of it in a different scenario, namely to improve the results of a Satisfiability Modulo Theories solver. Our method is used as a black box in the nodes of a branch-and-bound tree to implement conflict learning based on the certificate of infeasibility for linear programs consisting of subsets of linear constraints. The generated conflict clauses are in general small and give good rnprospects for reducing the search space. Compared to other methods we obtain significant improvements in the running time, especially on the large instances.