960 resultados para inorganic matrices
Resumo:
The modelling of the local structure of sol-gel derived Eu3+-based organic/inorganic hybrids is reported, based on Small-Angle X-ray Scattering (SAXS), photoluminescence and mid-infrared spectroscopy. The hybrid matrix of these organically modified silicates, classed as di-ureasils and termed U(2000) and U(600), is formed by poly( oxyethylene) (POE) chains of variable length grafted to siloxane domains by means of urea cross-linkages. Europium triflate, Eu(CF3SO3)(3), was incorporated in the two di-ureasil matrices with compositions 400 greater than or equal ton greater than or equal to 10, n is the molar ratio of ether oxygens per Eu3+. The SAXS data for undoped hybrids (n=infinity) show the presence of a well-defined peak attributed to the existence of a liquid-like spatial correlation of siloxane rich domains embedded in the polymer matrix and located at the ends of the organic segments. The obtained siloxane particle gyration radius Rg(1) is around 5 Angstrom (error within 10%), whereas the interparticle distance d is 25 +/-2 Angstrom and 40 +/-2 Angstrom, for U(600) and U(2000), respectively. For the Eu3+-based nanocomposites the formation of a two-level hierarchical local structure is discerned. The primary level is constituted by strongly spatially correlated siloxane particles of gyration radius Rg(1) (4-6 and 3-8 Angstrom, errors within 5%, for U(600())n Eu(CF3SO3)(3), 200 greater than or equal ton greater than or equal to 40, and U(2000)(n)Eu(CF3SO3)(3), 400 greater than or equal ton greater than or equal to 40, respectively) forming large clusters of gyration radius Rg(2) (approximate to 75 +/- 10 Angstrom). The local coordination of Eu3+ in both di-ureasil series is described combining the SAXS, photoluminescence and mid-infrared results. In the di-ureasils containing long polymer chains, U(2000)(n)Eu(CF3SO3)(3), the cations interact exclusively with the carbonyl oxygens atoms of the urea bridges at the siloxane-POE interface. In the hybrids containing shorter chains, U(600)(n)Eu(CF3SO3)(3) with n ranging from 200 to 60, the Eu3+ ions interact solely with the ether-type oxygens of the polymer chains. Nevertheless, in this latter family of hybrids a distinct Eu3+ local site environment involving the urea cross-linkages is detected when the europium content is increased up to n=40.
Resumo:
This work reports on the photoluminescent properties of the complex diequatris(thenoyltrifluoroacetonate) europium(III), which was adsorbed or supported on tubes of modified surface silica matrix. The luminescence data and the experimental intensity parameter results evidence the existence of high interactions between the complex [Eu(tta)(3)(H2O)(2)] and the modified surface matrix. The anchored complex on macroporous silica shows higher intensity parameter values suggesting that the Eu-0 bond becomes more covalent than the adsorbed one. Therefore, the hypersensitive character of the D-5(0) --> F-7(2) transition increases evidencing a high contribution of the dynamic coupling mechanism possibly due to highly polarizable chemical environments occupied by europium(III) ion. The lifetimes of the complex on silica matrices were measured. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This work describes a methodology developed for performing the extraction, detection and quantification of Ra-228 in waters, suspended solids and sediments. The technique proved to be useful for analyzing samples from the hydrological environment of Morro do Ferro, Pocos de Caldas plateau, Brazil. The 228Ra activity in underground waters of 5 boreholes drilled in the area varied from 0.02 up to 14.5 Bq/l, whereas for the surficial waters the variation was from 0.04 to 0.51 Bq/l; for the suspended solids, the values ranged from 1.5 up to 419 Bq/g, whereas it was possible to find a value of 2.04 Bq/g for the sediments. These results show the applicability of the method for characterizing different matrices of environmental interest. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Immunochemical methods have increased considerably in the past years, and many examples of small and large scale studies have demonstrated the reliability of the immunotechniques for control and monitoring gf contaminant residues in different kinds of samples. Application of the immunoassay (IA) methods in pesticide residue control is an area with enormous potential for growth. The most extensively studied IA is the enzyme-linked absorbent assay (ELISA), but several other approaches, that include radioimmunoassay and immunoaffinity chromatography, have been also developed recently. In comparison with classical analytical methods, IA methods offer the possibility of highly sensitive, relatively vapid, and cost-effective measurements. This paper introduces the general IAs used until now, focusing on their use in pesticide analysis, and discussing briefly the effects of interferences from solvent residues or matrix components on the IA performance. Numerous immunochemical methods commonly used for pesticide determination in different samples such as food, crop and environmental samples are presented.
Resumo:
Hybrid organic - inorganic nanocomposites doped with Fe-II and Fe-III ions and exhibiting interesting magnetic properties have been obtained by the sol - gel process. The hybrid matrix of these ormosils ( organically modified silicates), classed as di-ureasils and termed U( 2000), is composed of poly( oxyethylene) chains of variable length grafted to siloxane groups by means of urea crosslinkages. Iron perchlorate and iron nitrate were incorporated in the diureasil matrices, leading to compositions within the range 80 greater than or equal to n greater than or equal to 10, n being the molar ratio of ether-type O atoms per cation. The structure of the doped diureasils was investigated by small-angle X-ray scattering (SAXS). For Fe-II-doped samples, SAXS results suggest the existence of a two-level hierarchical structure. The primary level is composed of spatially correlated siloxane clusters embedded in the polymeric matrix and the secondary, coarser level consists of domains where the siloxane clusters are segregated. The structure of Fe-III-doped hybrids is different, revealing the existence of iron oxide based nanoclusters, identified as ferrihydrite by wide-angle X-ray diffraction, dispersed in the hybrid matrix. The magnetic susceptibility of these materials was determined by zero-field-cooling and field-cooling procedures as functions of both temperature and field. The different magnetic features between Fe-II- and Fe-III-doped samples are consistent with the structural differences revealed by SAXS. While Fe-II-doped composites exhibit a paramagnetic Curie-type behaviour, hybrids containing Fe-III ions show thermal and field irreversibilities.
Resumo:
Several clean-up procedures which included the use of glass chromatography columns (silica gel, alumina, Florisil, silanized Celite-charcoal), Sep-Pak cartridges and standard solutions were compared for the determination of the following N-methylcarbamate (NMC) insecticides: aldicarb, carbaryl, carbofuran, methomyl and propoxur. According to recovery results of the compounds after elution in a glass column, the most efficient systems employed 4.6% deactivated alumina and a silanized Celite-charcoal (4:1) as adsorbents, using dichloromethane-methanol (99:1) and toluene-acetonitrile (75:25) mixtures, respectively, as binary eluents. The recoveries of the compounds studied varied from 84 to 120%. Comparable recoveries (75-100%) for Sep-Pak cartridges in normal phase (NH2, CN) and reversed phase (C-8) were observed. Different temperatures were tested during the concentration step in a rotary evaporator, and we verified a strong influence of this parameter on the stability of some compounds, such as carbofuran and carbaryl. Recovery studies employing the best clean up procedures were performed at the Brazilian agricultural level in potato and carrot samples; Validation methodology of the US Food and Drug Administration was adapted for the N-methylcarbamate analysis. Their recoveries ranged between 79 and 93% with coefficients of variation of 2.3-8%. (C) 1998 Elsevier B.V. B.V.
Resumo:
Zirconia-polymethylmetacrylate hybrids prepared by a sol-gel method were deposited by dip-coating on stainless steel to improve the resistance against wet corrosion. The effect of the concentration of polymethylmetacrylate and the number of coating applications on the microstructure and corrosion performance of coated samples was investigated. The microstructural properties of samples was analyzed by scanning electron and atomic force microscopy, adhesion tests and profilemeter measurements. The electrochemical corrosion was evaluated through potentiodynamic polarization curves at room temperature. Results show that the sample prepared with 17 vol.% of polymethylmethacrylate has a maximum corrosion resistance, smaller roughness, are hermetic and adherent to the substrate. This film increases the life time of the stainless steel by a factor 30. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Here we describe the preparation of iron(II) porphyrinosilica in a simple one-pot reaction, where the -SO2Cl groups present in the phenyl rings of FeTDCSPP+ react with 3-aminopropyltriethoxysilane and tetraethoxysilane in the presence of a nitrogenous base, leading to iron(III) porphyrinosilica. In this same procedure, molecular cavities containing regularly spaced functional groups are created through the molecular imprinting technique, in which the nitrogenous base coordinated to the iron(III) porphyrin serves as a template. The removal of such template in a Soxhlet extractor leads to a cavity with the same shape and size as the nitrogenous base, enabling the construction of shape-selective catalysts mimicking cytochrome P-450. Five different imprinting molecules have been used: imidazole, 1-methylimidazole, 2-methylbenzimidazole, 4-phenylimidazole and miconazole and ultra-violet/visible absorption spectroscopy, thermogravimetric analysis and electron paramagnetic resonance carried out. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Organic-inorganic hybrids, named di-ureasils and described by polyether-based chains grafted to both ends to a siliceous backbone through urea cross linkages, were used as hosts for incorporation of the well-known coordination complex of trivalent europium (Eu3+) ions described by the formula [Eu(TTA)(3)(H2O)(2)] (where TTA stands for thenoyltrifluoroacetone). By comparing with Eu3+-doped di-ureasil without complex form the new materials prepared here enhanced the quantum efficiency for photoemission of Eu3+ ions. The enhancement can be explained by the coordination ability of the organic counterpart of the host structure which is strong enough to displace water molecules in [Eu(TTA)(3)(H2O)(2)] from the rare earth neighbourhood after the incorporation process. High intensity of Eu3+ emission was observed with a low non-radiative decay rate under ultraviolet excitation. The quantum efficiency calculated from the decay of D-5(0) emission was 74%, which in the same range of values previously obtained for the most efficient Eu3+ coordination compounds reported in literature. Luminescence, X-ray absorption and infrared absorption results considered together leads to a picture where the first coordination shell of Eu3+ is composed of the 6 oxygen atoms of the 3 beta-diketonate ligands and 2 ether-like oxygen atoms of the host. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Nd3+-based organic/inorganic hybrids have potential application in the field of integrated optics. Attractive sol-gel derived di-urea and di-urethane cross-linked poly (oxyethylene) (POE)/siloxane hybrids (di-ureasils and di-urethanesils, respectively) doped with neodymium triflate (Nd(CF3SO3)(3)) were examined by Fourier transform mid-infrared (FT-IR), Raman (FT-Raman), Si-29 magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and photoluminescence spectroscopies, and small-angle X-ray scattering (SAXS). The goals of this work were to determine which cation coordinating site of the host matrix (ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the photoluminescence properties. The main conclusion derived from this study is that the hydrogen-bonded associations formed throughout the materials play a major role in the hybrids nanostructure and photoluminescence properties.
Resumo:
Organic-inorganic hybrid materials were prepared from an ureasil precursor (ureapropyltriethoxysilane designated as UPTES) and acrylic acid modified zirconium (IV) n-propoxide. Thin films containing rhodamine 6G (Rh6G) were prepared by spin-coating on glass substrates with different Zr:Si molar ratios (Zr:Si = 75:25, 50:50 and 25:75). Refractive index, thickness, number of propagating modes and attenuation coefficient were measured at 543.5, 632.8 and 1550 nm wavelengths by the prism coupling technique. Distributed feedback (DFB) laser effect was observed and studied as a function of films thickness and refractive index.