986 resultados para injuries by stingrays
Resumo:
Mode of access: Internet.
Resumo:
Included: Brief of Trades and Labour Congress of Canada.--Laws of European countries and the provinces of Canada.--Acts passed by state legislatures in the United States of America
Resumo:
Also on cover: An analysis of individual-on-individual injuries reported to the Office of the Inspector General from the department facilities, July 1993 through June 1996.
Resumo:
"November 1996."
Resumo:
"This project was supported by cooperative agreement number W9J48C4171 from the U.S. Department of Labor, Bureau of Labor Statistics."
Resumo:
"This project was supported by cooperative agreement number W9J48C4171 from the U.S. Department of Labor, Bureau of Labor Statistics."
Resumo:
"This project was supported by cooperative agreement from the U.S. Dept. of Labor, Bureau of Labor Statistics."
Resumo:
This handbook is designed to serve as a general guide to the rights and obligations of employees who have experienced work-related injuries or diseases, as well as the rights and obligations of their employers, under the Illinois Workers' Compensation and Occupational Diseases Act.
Resumo:
"A publication of the Illinois Department of Public Health, Division of Epidemiologic Studies."
Resumo:
"This project was supported by cooperative agreement number W9081170P from the U.S. Department of Labor, Bureau of Labor Statistics."
Resumo:
"This project was supported by cooperative agreement number W9081170P from the U.S. Department of Labor, Bureau of Labor Statistics."
Resumo:
"This project was supported by cooperative agreement number W9081170P from the U.S. Department of Labor, Bureau of Labor Statistics."
Resumo:
Published in London in 1771 and 1808.
Resumo:
The monogeneans Decacotyle lymmae and D. tetrakordyle (Monocotylidae: Decacotylinae), from gills of the dasyatid stingrays Taeniura lymma and Pastinachus sephen, respectively, have a single aperture for adhesive secretion on each side of the anterior ventrolateral region. Rod-shaped bodies (S1) and electron-dense spherical secretion (S2) exit through specialised ducts opening adjacent to one another within these apertures. The S1 bodies are 230 +/- 11 nm wide and greater than or equal to4 mum long in D. lymmae and 240 +/- 9 nm wide and greater than or equal to3.3 mum long in D. tetrakordyle. The S2 bodies have a diameter of 88 +/- 7 nm in D. lymmae and 65 +/- 6 nm in D. tetrakordyle. The apertures are unusual in being extremely small (internal diameter, 3-5 mum). Each aperture has a slit-like surface opening as small as 160 nm wide, surrounded by muscle fibres indicating that they may be opened and closed. The aperture is also surrounded and underlain by muscle fibres that may aid in secretion from, or even eversion of, the tissue within the aperture. Sensilla/cilia are also found within the apertures. Additional secretions from anteromedian and anterolateral glands (body glands), each containing granular secretions, occur in profusion and exit anteriorly and posteriorly to the position of the apertures, through duct openings in the general body tegument. These granular secretions do not appear to be associated with anterior adhesion. Both species show similarities in aperture, underlying tissue, sense organ, and secretion detail, in accordance with findings from other monogenean genera, and which supports the importance of such data for phylogenetic studies.
Resumo:
Despite a century's knowledge that soluble aluminum (Al) is associated with acid soils and poor plant growth, it is still uncertain how Al exerts its deleterious effects. Hypotheses include reactions of Al with components of the cell wall, plasmalemma, or cytoplasm of cells close to the root tip, thereby reducing cell expansion and root growth. Digital microscopy was used to determine the initial injuries of soluble Al to mungbean (Vigna radiata L.) roots. Roots of young seedlings were marked with activated carbon particles and grown in 1 mm CaCl2 solution at pH 6 for ca. 100 min (control period), and AlCl3 solution was added to ensure a final concentration of 50 muM Al (pH 4). Further studies were conducted on the effects of pH 4 with and without 50 muM Al. Four distinct, but possibly related, initial detrimental effects of soluble Al were noted. First, there was a 56-75% reduction in the root elongation rate, first evident 18-52 min after the addition of Al, root elongation continuing at a decreased rate for ca. 20 It. Decreasing solution pH from 6 to 4 increased the root elongation rate 4-fold after 5 min, which decreased to close to the original rate after 130 min. The addition of Al during the period of rapid growth at pH 4 reduced the root elongation rate by 71% 14 min after the addition of Al. The activated carbon marks on the roots showed that, during the control period, the zone of maximum root growth occurred at 2,200-5,100 mum from the root tip (i.e. the cell elongation zone). It was there that Al first exerted its detrimental effect and low pH increased root elongation. Second, soluble Al prevented the progress of cells from the transition to the elongation phase, resulting in a considerable reduction of root growth over the longer term. The third type of soluble Al injury occurred after exposure for ca. 4 h to 50 mum Al when a kink developed at 2,370 mum from the root tip. Fourth, ruptures of the root epidermal and cortical cells at 1,900-2,300 mum from the tip occurred greater than or equal to4.3 h after exposure to soluble Al. The timing and location of Al injuries support the contention that Al initially reduces cell elongation, thus decreasing root growth and causing damage to epidermal and cortical cells.