989 resultados para initiation factor 4E
Resumo:
The most recent National Health Survey reports that more than 80% of women initiate breastfeeding, while recent studies describe initiation rates of more than 90%. Yet fewer than 50% of women continue to breastfeed for 6 months or longer. This is at odds with National Health and Medical Research Council recommendations that 80% of infants be exclusively breastfed for the first 6 months of life. Women are more likely to initiate and continue to breastfeed if their doctor supports and encourages them to do so. Conversely, women perceive a neutral attitude by doctors toward breastfeeding to be similar to a negative attitude. Therefore, while doctors may not perceive their support or encouragement to be a determining factor in a woman’s breastfeeding decisions, women often place great emphasis on their GP's attitude to breastfeeding and are much more likely to think that information provided by a doctor is important. No previous research in Australia has addressed the issue of how GPs perceive their roles and responsibilities regarding breastfeeding. As part of a larger research project investigating the breastfeeding skills and knowledge of general practice registrars, this article reports the results of qualitative interviews with eight general practice registrars and their views and beliefs about GPs’ responsibilities to breastfeeding women.
Resumo:
The stress corrosion cracking (SCC) initiation process for 4340 high strength steel in distilled water at room temperature was studied using a new kind of instrument: an environmental scanning electron microscope (ESEM). It was found that the applied stress accelerated oxide film formation which has an important influence on the subsequent SCC initiation. SCC was observed to initiate in the following circumstances: (1) cracking of a thick oxide film leading to SCC initiation along metal grain boundaries, (2) the initiation of pits initiating SCC in the metal and (3) SCC initiating from the edge of the specimen. All these three SCC initiation circumstances are consistent with the following model which couples SCC initiation with cracking of a surface protective oxide. There is a dynamic interaction between oxide formation, the applied stress, oxide cracking, pitting and the initiation of SCC. An aspect of the dynamic interaction is cracks forming in a protective surface oxide because of the applied stress, exposing to the water bare metal at the oxide crack tip, and oxidation of the bare metal causing crack healing. Oxide crack healing would be competing with the initiation of intergranular SCC if an oxide crack meets the metal surface at a grain boundary. If the intergranular SCC penetration is sufficiently fast along the metal grain boundary, then the crack yaws open preventing healing of the oxide crack. If intergranular SCC penetration is not sufficiently fast, then the oxidation process could produce sufficient oxide to fill both the stress corrosion crack and the oxide crack; in this case there would be initiation of SCC but only limited propagation of SCC. Stress-induced cracks in very thin oxide can induce pits which initiate SCC, and under some conditions such stress induced cracks in a thin oxide can directly initiate SCC.
Resumo:
Fracture mechanics tests were carried out for AerMet 100 in distilled water and NaCl (3.5 and 35 gl(-1)). The initiation period at higher values of the stress intensity factor indicated that load application in the stress corrosion cracking (SCC) environment is a necessary but not sufficient factor for SCC and that time is needed for some other factor (e.g., the local hydrogen concentration) to reach an appropriate value. The threshold stress intensity factor, K-ISSC, was found to increase with decreasing NaCl concentration. The plateau stress corrosion crack velocity was 2 x 10(-8) ms(-1) for NaCl (3.5 and 35 gl(-1)). The fracture mode was transgranular with small areas of an intergranular nature. (C) 1998 Chapman & Hall.
Resumo:
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-3), and IL-5 are heterodimeric complexes consisting of cytokine-specific alpha subunits and a common signal-transducing beta subunit (h beta c). We have previously demonstrated the oncogenic potential of this group of receptors by identifying constitutively activating point mutations in the extracellular and transmembrane domains of h beta c. We report here a comprehensive screen of the entire h beta c molecule that has led to the identification of additional constitutive point mutations by virtue of their ability to confer factor independence on murine FDC-P1 cells. These mutations were clustered exclusively in a central region of h beta c that encompasses the extracellular membrane-proximal domain, transmembrane domain, and membrane-proximal region of the cytoplasmic domain. Interestingly, most h beta c mutants exhibited cell type-specific constitutive activity, with only two transmembrane domain mutants able to confer factor independence on both murine FDC-P1 and BAF-B03 cells. Examination of the biochemical properties of these mutants in FDC-P1 cells indicated that MAP kinase (ERK1/2), STAT, and JAK2 signaling molecules were constitutively activated. In contrast, only some of the mutant beta subunits were constitutively tyrosine phosphorylated. Taken together; these results highlight key regions involved in h beta c activation, dissociate h beta c tyrosine phosphorylation from MAP kinase and STAT activation, and suggest the involvement of distinct mechanisms by which proliferative signals can be generated by h beta c. (C) 1998 by The American Society of Hematology.
Resumo:
This paper examines gender differences and trends over time in the age of initiation to heroin use. Data from two large surveys: the Sydney component of the ANAIDUS, conducted in 1989, and the ASHIDU, conducted in 1994, were used to examine this issue. Together, these studies contained information on 1,292 individuals who identified themselves as heroin users. Results indicated that, while there were no significant gender differences in age of initiation to heroin use, there was a significant (p < 0.001) time trend in the mean age at which heroin was first used. Specifically, the mean age of first heroin use among individuals born during the interval 1940-1949 was 20.5 years while among those born during 1970-1979 the mean age of first heroin use was 16.5 years. These findings were confirmed by analyses of the National Household Survey. Further analysis of the ASHIDU data indicated that younger age of initiation to heroin use was associated with polydrug use, overdose and crime after the effects of duration of heroin use had been statistically controlled. These findings suggest that there has been both an increase in the willingness of young people to experiment with heroin and an increased availability of the drug over this time. In combination with evidence that there has been an increase in the amount of heroin being imported into Australia, and an increased demand for treatment for opiate dependence, these data suggest that Australia is experiencing an increase in the use of heroin, particularly among youth.
Resumo:
Analysis of the structure of the urochordate Herdmania curvata ribosomal DNA intergenic spacer (IGS) and its role in transcription initiation and termination suggests that rRNA gene regulation in this chordate differs from that in vertebrates. A cloned H, curvata IGS is 1881 bp and composed predominantly of two classes of similar repeat sequences that largely alternate in a tandem array. Southern blot hybridization demonstrates that the IGS length variation within an individual and population is largely the result of changes in internal repeat number. Nuclease S1 mapping and primer extension analyses suggest that there are two transcription initiation sites at the 3' end of the most 3' repetitive element; these sites are 6 nucleotides apart. Unlike mouse, Xenopus, and Drosophila, there is no evidence of transcription starting elsewhere in the IGS. Most sequence differences between the promoter repeat and the other internal repeats are in the vicinity of the putative initiation sites. As in Drosophila, nuclease S1 mapping of transcription termination sites suggest that there is not a definitive stop site and a majority of the pre-rRNAs read through a substantial portion of the IGS. Some transcription appears to proceed completely through the promoter repeat into the adjacent rDNA unit. Analysis of oocyte RNA by reverse transcription-polymerase chain reaction (RT-PCR) confirms that readthrough transcription into the adjacent rDNA unit is occurring in some small IGS length variants; there is no evidence of complete readthrough of IGSs larger than 1.0 kb.
Resumo:
Twenty-three patients treated with intracerebroventricular (ICV) morphine in this study not only obtained excellent pain relief without rapid increases in dose, but also experienced a reduction in morphine-related side effects. By 24 h after initiation of ICV morphine, the mean trough cerebrospinal fluid (CSF) morphine concentration (approximately 20 mu M) was 50-fold higher than the baseline concentration (approximately 0.4 mu M), and the CSF concentration of morphine-6-glucuronide (M6G) was undetectable (
Resumo:
The effects of conjugating cholesterol to either or both ends of a phosphorothioate (PS) oligonucleotide were analyzed in terms of cellular uptake and antisense efficacy. The oligo sequence was directed against the p75 nerve growth factor receptor (p75), and was tested in differentiated PC12 cells, which express high levels of this protein. The addition of a single cholesteryl group to the 5'-end significantly increased cellular uptake and improved p75 mRNA downregulation compared with the unmodified PS oligo, However, only a minor degree of downregulation of p75 protein was obtained with 5' cholesteryl oligos, Three different linkers was used to attach the 5' cholesteryl group but were found not to have any impact on efficacy. Addition of a single cholesteryl group to the 3'-end led to greater p75 mRNA downregulation (31%) and p75 protein downregulation (28%) than occurred with the 5' cholesteryl oligos. The biggest improvement in antisense efficacy, both at the mRNA and protein levels, was obtained from the conjugation of cholesterol to both ends of the oligo. One of the bis-cholesteryl oligos was nearly as effective as cycloheximide at decreasing synthesis of p75, The bis-cholesteryl oligos also displayed significant efficacy at 1 mu M, whereas the other oligos required 5 mu M to be effective. The enhanced efficacy of bis-cholesteryl oligos is likely to be due to a combination of enhanced cellular uptake and resistance to both 5' and 3' exonucleases.
Resumo:
FIBROBLAST growth factors (FGFs) are critical for normal development of the organ of Corti, and may also protect hair cells from ototoxic damage. Four different fibroblast growth factors are known, three of which have different splice variants in the extracellular immunoglobin-like (Ig) III FGF-binding domain, giving different patterns of sensitivity to the different FGFs. Analysis of a cDNA library of rat outer hair cells by the polymerase chain reaction, using isoform specific primers, showed expression only of FGF receptor 3, splice variant IIIc. This allows us to predict the pattern of sensitivity to applied FGFs, may be useful in targeting outer hair cells selectively during an FGF-based strategy for cochlear therapy. (C) 1998 Lippincott Williams & Wilkins.
Resumo:
The early effects of heat stress on the photosynthesis of symbiotic dinoflagellates (zooxanthellae) within the tissues of a reef-building coral were examined using pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photorespirometry. Exposure of Stylophora pistillata to 33 and 34 degrees C for 4 h resulted in (1) the development of strong non-photochemical quenching (qN) of the chlorophyll fluorescence signal, (2) marked decreases in photosynthetic oxygen evolution, and (3) decreases in optimal quantum yield (F-v/F-m) of photosystern II (PSII), Quantum yield decreased to a greater extent on the illuminated surfaces of coral branches than on lower (shaded) surfaces, and also when high irradiance intensities were combined with elevated temperature (33 degrees C as opposed to 28 degrees C), qN collapsed in heat-stressed samples when quenching analysis was conducted in the absence of oxygen, Collectively, these observations are interpreted as the initiation of photoprotective dissipation of excess absorbed energy as heat (qN) and O-2-dependent electron flow through the Mehler-Ascorbate-Peroxidase cycle (MAP-cycle) following the point at which the rate of light-driven electron transport exceeds the capacity of the Calvin cycle. A model for coral bleaching is proposed whereby the primary site of heat damage in S, pistillata is carboxylation within the Calvin cycle, as has been observed during heat damage in higher plants, Damage to PSII and a reduction in F-v/F-m (i.e. photoinhibition) are secondary effects following the overwhelming of photoprotective mechanisms by light. This secondary factor increases the effect of the primary variable, temperature. Potential restrictions of electron flow in heat-stressed zooxanthellae are discussed with respect to Calvin cycle enzymes and the unusual status of the dinoflagellate Rubisco, Significant features of our model are that (1) damage to PSII is not the initial step in the sequence of heat stress in zooxanthellae, acid (2) light plays a key secondary role in the initiation of the bleaching phenomena.
Resumo:
Two synthetic analogues of murine epidermal. growth factor, [Abu6, 20] mEGF4-48 (where Abu denotes amino-butyric acid) and [G1, M3, K21, H40] mEGF1-48, have been investigated by NMR spectroscopy. [Abu6, 20] mEGF4-48 was designed to determine the contribution of the 6-20 disulfide bridge to the structure and function of mEGF The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. Significant structural differences were observed near the N-terminus, however, with the direction of the polypeptide chain between residues four and nine being altered such that these residues were now located on the opposite face of the main beta-sheet from their position in native mEGF Thermal denaturation experiments also showed that the structure of [Abu6, 20] mEGF4-48 was less stable than that of mEGF. Removal of this disulfide bridge resulted in a significant loss of both mitogenic activity in Balb/c 3T3 cells and receptor binding on A431 cells compared with native mEGF and mEGF4-48, implying that the structural changes in [Abu6, 20] mEGF4-48, although limited to the N-terminus, were sufficient to interfere with receptor binding. The loss of binding affinity probably arose mainly from steric interactions of the dislocated N-terminal region with part of the receptor binding surface of EGF [G1, M3, K21, H40] mEGF1-48 was also synthesized in order to compare the synthetic polypeptide with the corresponding product of recombinant expression. Its mitogenic activity in Balb/c 3T3 cells was similar to that of native mEGF and analysis of its H-1 chemical shifts suggested that its structure was also very similar to native.
Resumo:
Zinc fingers (ZnFs) are generally regarded as DNA-binding motifs. However, a number of recent reports have implicated particular ZnFs in the mediation of protein-protein interactions. The N-terminal ZnF of GATA-1 (NF) is one such finger, having been shown to interact with a number of other proteins, including the recently discovered transcriptional co-factor FOG. Here we solve the three-dimensional structure of the NF in solution using multidimensional H-1/N-15 NMR spectroscopy, and we use H-1/N-15 spin relation measurements to investigate its backbone dynamics. The structure consists of two distorted beta-hairpins and a single alpha-helix, and is similar to that of the C-terminal ZnF of chicken GATA-1. Comparisons of the NF structure with those of other C-4-type zinc binding motifs, including hormone receptor and LIM domains, also reveal substantial structural homology. Finally, we use the structure to map the spatial locations of NF residues shown by mutagenesis to be essential for FOG binding, and demonstrate that these residues all lie on a single face of the NE Notably, this face is well removed from the putative DNA-binding face of the NE an observation which is suggestive of simultaneous roles for the NF; that is, stabilisation of GATA-1 DNA complexes and recruitment of FOG to GATA-1-controlled promoter regions.
Resumo:
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.
Resumo:
Activation of the human complement system of plasma proteins during immunological host defense can result in overproduction of potent proinflammatory peptides such as the anaphylatoxin C5a. Excessive levels of C5a are associated with numerous immunoinflammatory diseases, but there is as yet no clinically available antagonist to regulate the effects of C5a. We now describe a series of small molecules derived from the C-terminus of C5a, some of which are the most potent low-molecular-weight C5a receptor antagonists reported to date for the human polymorphonuclear leukocyte (PMN) C5a receptor. H-1 NMR spectroscopy was used to determine solution structures for two cyclic antagonists and to indicate that antagonism is related to a turn conformation, which can be stabilized in cyclic molecules that are preorganized for receptor binding. While several cyclic derivatives were of similar antagonistic potency, the most potent antagonist was a hexapeptide-derived macrocycle AcF[OPdChaWR] with an IC50 = 20 nM against a maximal concentration of C5a (100 nM) on intact human PMNs. Such potent C5a antagonists may be useful probes to investigate the role of C5a in host defenses and to develop therapeutic agents for the treatment of many currently intractable inflammatory conditions.