332 resultados para incoherent correlator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo deste trabalho foi analisar práticas microbianas , singulares e plurais, relativas ao tema da negritude, no cotidiano da comunidade batista Maranata, como estudo de caso de um grupo religioso no distrito Grajaú, periferia da cidade de São Paulo. Fazendo uso da História Oral, produzimos nossas fontes de analise documental dando voz a um grupo de pessoas dessa comunidade evangélica, que se auto declararam pretas e pardas. Detectamos em seu discurso a percepção que têm em relação à temática da negritude brasileira, sobre as políticas de ações afirmativas, sobre a presença do preconceito e discriminação racial na atual sociedade, bem como a posição da comunidade diante dessa temática. A pergunta pelo papel da mentalidade religiosa no enfrentamento desta problemática foi o foco orientador destes diferentes eixos de observação. Por ser um tema muito delicado e pouco discutido entre os evangélicos, percebemos que a comunidade não se sentiu muito à vontade para discuti-lo. O discurso de nossos interlocutores, que aparentemente se mostrava ambíguo e por vezes incoerente, pois ora admitia-se o preconceito racial, e ora ele era negado, foi uma forma encontrada por estes consumidores para encobrir os mecanismos de descriminação e exclusão que também percebem existir dentro de sua comunidade de fé e para, desse modo, sentirem-se aceitos na comunidade, criando assim táticas de sobrevivência e espaços de pertencimento em meio às estratégias impostas pela denominação religiosa.(AU)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pulse compression techniques originated in radar.The present work is concerned with the utilization of these techniques in general, and the linear FM (LFM) technique in particular, for comnunications. It introduces these techniques from an optimum communications viewpoint and outlines their capabilities.It also considers the candidacy of the class of LFM signals for digital data transmission and the LFM spectrum. Work related to the utilization of LFM signals for digital data transmission has been mostly experimental and mainly concerned with employing two rectangular LFM pulses (or chirps) with reversed slopes to convey the bits 1 and 0 in an incoherent node.No systematic theory for LFM signal design and system performance has been available. Accordingly, the present work establishes such a theory taking into account coherent and noncoherent single-link and multiplex signalling modes. Some new results concerning the slope-reversal chirp pair are obtained. The LFM technique combines the typical capabilities of pulse compression with a relative ease of implementation. However, these merits are often hampered by the difficulty of handling the LFM spectrum which cannot generally be expressed closed-form. The common practice is to obtain a plot of this spectrum with a digital computer for every single set of LFM pulse parameters.Moreover, reported work has been Justly confined to the spectrum of an ideally rectangular chirp pulse with no rise or fall times.Accordingly, the present work comprises a systerratic study of the LFM spectrum which takes the rise and fall time of the chirp pulse into account and can accommodate any LFM pulse with any parameters.It· formulates rather simple and accurate prediction criteria concerning the behaviour of this spectrum in the different frequency regions. These criteria would facilitate the handling of the LFM technique in theory and practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gestalt grouping rules imply a process or mechanism for grouping together local features of an object into a perceptual whole. Several psychophysical experiments have been interpreted as evidence for constrained interactions between nearby spatial filter elements and this has led to the hypothesis that element linking might be mediated by these interactions. A common tacit assumption is that these interactions result in response modulation which disturbs a local contrast code. We addressed this possibility by performing contrast discrimination experiments using two-dimensional arrays of multiple Gabor patches arranged either (i) vertically, (ii) in circles (coherent conditions), or (iii) randomly (incoherent condition), as well as for a single Gabor patch. In each condition, contrast increments were applied to either the entire test stimulus (experiment 1) or a single patch whose position was cued (experiment 2). In experiment 3, the texture stimuli were reduced to a single contour by displaying only the central vertical strip. Performance was better for the multiple-patch conditions than for the single-patch condition, but whether the multiple-patch stimulus was coherent or not had no systematic effect on the results in any of the experiments. We conclude that constrained local interactions do not interfere with a local contrast code for our suprathreshold stimuli, suggesting that, in general, this is not the way in which element linking is achieved. The possibility that interactions are involved in enhancing the detectability of contour elements at threshold remains unchallenged by our experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nuclear Magnetic Resonance (NMR) spectra of liquids contain a wealth of quantitative information that may be derived, for instance, from chemical shifts and spin-spin couplings. The available information depends on the incoherent rapid molecular motion that causes complicating effects present in the solid state to average to zero. Whereas liquid state NMR spectra show narrow lines, the corresponding NMR spectra from the solid state are normally composed of exceedingly broad resonance lines due to highly restricted molecular motion. It is, therefore, difficult to obtain directly as detailed information from the spectra of solids as from those derived from the liquid state. Studies on a new technique (SINNMR, the sonically induced narrowing of the NMR spectra of solids) to remove line broadening effects in the NMR spectra of the solid state are reported within this thesis. SINNMR involves narrowing the NMR absorptions from solid particles by irradiating them with ultrasound when they are suspended in a support liquid. It is proposed that ultrasound induces incoherent motion of the suspended particles, producing motional characteristics of the particles similar to those of rather large molecules. The first report of apparently successful experiments involving SINNMR[1] emphasised both the irreproducibility of the technique and the uncertainty regarding its true origin. If SINNMR can be made reproducible and the effect definitively attributed to the sonically induced incoherent motional averaging of particles, the technique could offer a simple alternative to the now classical magic-angle spinning (MAS) NMR[2] and the recently reported dynamic angle spinning (DAS)[3] and double rotation (DOR)[4] techniques. Evidence is presented in this thesis to support the proposal that ultrasound may be used to narrow the NMR spectral resonances from solids by inducing incoherent motion of particles suspended in support liquids and, additionally, for some solids, by inducing rotational motion of molecular constituents in the lattices of solids. Successful SINNMR line narrowing using 20 kHz ultrasound is reported for a variety of samples: including trisodium orthophosphate, polytetrafluoroethylene and aluminium alloys. Investigations of SINNMR line narrowing in trisodium phosphate have revealed the relationship between ultrasonic power, particle size and support liquid density for the production of optimum SINNMR conditions. It is also proposed that the incoherent motion of particles induced by 20 kHz ultrasound can originate from interactions between acoustically induced cavitation microjets and particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A typical liquid state NMR spectrum is composed of a number of discrete absorptions which can be readily interpreted to yield detailed information about the chemical environment of the nuclei found within the sample. The same cannot be said about the spectra of solid samples. For these the absorptions are typically broad, featureless and yield little information directly. This situation may be further exacerbated by the characteristically long T1 values of nuclei bound within a solid lattice which, consequently, require long inter-sequence delays that necessitate lengthy experiments. This work attempts to address both of these inherent problems. Classically, the resolution of the broad-line spectra of solids into discrete resonances has been achieved by imparting to the sample coherent rotation about specific axes in relation to the polarising magnetic field, as implemented in the magic-angle spinning (MAS) [1], dynamic angle spinning (DAS) [2] and double rotation (DOR) [3] NMR experiments. Recently, an alternative method, sonically induced narrowing of the NMR spectra of solids (SINNMR) [4], has been reported which yields the same well resolved solid-state spectra as the classic solid-state NMR experiments, but which achieves the resolution of the broad-line spectra through the promotion of incoherent motion in a suspension of solid particles. The first part of this work examines SINNMR and, in particular, concentrates on ultrasonically induced evaluation, a phenomenon which is thought to be essential to the incoherent averaging mechanism. The second part of this work extends the principle of incoherent motion, implicit in SINNMR, to a new genre of particulate systems, air fluidized beds, and examines the feasibility of such systems to provide well resolved solid state NMR spectra. Samples of trisodium phosphate dodecahydrate and of aluminium granules are examined using the new method with partially resolved spectra being reported in the case of the latter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SINNMR (Sonically Induced Narrowing of the Nuclear Magnetic Resonance spectra of solids), is a novel technique that is being developed to enable the routine study of solids by nuclear magnetic resonance spectroscopy. SINNMR aims to narrow the broad resonances that are characteristic of solid state NMR by inducing rapid incoherent motion of solid particles suspended in a support medium, using high frequency ultrasound in the range 2-10 MHz. The width of the normal broad resonances from solids are due to incomplete averaging of several components of the total spin Hamiltonian caused by restrictions placed on molecular motion within a solid. At present Magic Angle Spinning (MAS) NMR is the classical solid state technique used to reduce line broadening, but: this has associated problems, not least of which is the appearance of many spinning side bands which confuse the spectra. It is hoped that SlNNMR will offer a simple alternative, particularly as it does not reveal spinning sidebands The fundamental question concerning whether the use of ultrasound within a cryo-magnet will cause quenching has been investigated with success, as even under the most extreme conditions of power, frequency and irradiator time, the magnet does not quench. The objective of this work is to design and construct a SINNMR probe for use in a super conducting cryo-magnet NMR spectrometer. A cell for such a probe has been constructed and incorporated into an adapted high resolution broadband probe. It has been proved that the cell is capable of causing cavitation, up to 10 MHz, by running a series of ultrasonic reactions within it and observing the reaction products. It was found that the ultrasound was causing the sample to be heated to unacceptable temperatures and this necessitated the incorporation of temperature stabilisation devices. Work has been performed on the investigation of the narrowing of the solid state 23Na spectrum of tri-sodium phosphate using high frequency ultrasound. Work has also been completed on the signal enhancement and T1 reduction of a liquid mixture and a pure compound using ultrasound. Some preliminary "bench" experiments have been completed on a novel ultrasonic device designed to help minimise sample heating. The concept involves passing the ultrasound through a temperature stabilised, liquid filled funnel that has a drum skin on the end that will enable the passage of ultrasound into the sample. Bench experiments have proved that acoustic attenuation is low and that cavitation in the liquid beyond the device is still possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the random input problem for a nonlinear system modeled by the integrable one-dimensional self-focusing nonlinear Schrödinger equation (NLSE). We concentrate on the properties obtained from the direct scattering problem associated with the NLSE. We discuss some general issues regarding soliton creation from random input. We also study the averaged spectral density of random quasilinear waves generated in the NLSE channel for two models of the disordered input field profile. The first model is symmetric complex Gaussian white noise and the second one is a real dichotomous (telegraph) process. For the former model, the closed-form expression for the averaged spectral density is obtained, while for the dichotomous real input we present the small noise perturbative expansion for the same quantity. In the case of the dichotomous input, we also obtain the distribution of minimal pulse width required for a soliton generation. The obtained results can be applied to a multitude of problems including random nonlinear Fraunhoffer diffraction, transmission properties of randomly apodized long period Fiber Bragg gratings, and the propagation of incoherent pulses in optical fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contrast sensitivity improves with the area of a sine-wave grating, but why? Here we assess this phenomenon against contemporary models involving spatial summation, probability summation, uncertainty, and stochastic noise. Using a two-interval forced-choice procedure we measured contrast sensitivity for circular patches of sine-wave gratings with various diameters that were blocked or interleaved across trials to produce low and high extrinsic uncertainty, respectively. Summation curves were steep initially, becoming shallower thereafter. For the smaller stimuli, sensitivity was slightly worse for the interleaved design than for the blocked design. Neither area nor blocking affected the slope of the psychometric function. We derived model predictions for noisy mechanisms and extrinsic uncertainty that was either low or high. The contrast transducer was either linear (c1.0) or nonlinear (c2.0), and pooling was either linear or a MAX operation. There was either no intrinsic uncertainty, or it was fixed or proportional to stimulus size. Of these 10 canonical models, only the nonlinear transducer with linear pooling (the noisy energy model) described the main forms of the data for both experimental designs. We also show how a cross-correlator can be modified to fit our results and provide a contemporary presentation of the relation between summation and the slope of the psychometric function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a coexistence of coherent and incoherent modes in the optical comb generated by a passively mode-locked quantum dot laser. This is experimentally achieved by means of optical linewidth, radio frequency spectrum, and optical spectrum measurements and confirmed numerically by a delay-differential equation model showing excellent agreement with the experiment. We interpret the state as a chimera state. © 2014 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study theoretically and numerically the dynamics of a passive optical fiber ring cavity pumped by a highly incoherent wave: an incoherently injected fiber laser. The theoretical analysis reveals that the turbulent dynamics of the cavity is dominated by the Raman effect. The forced-dissipative nature of the fiber cavity is responsible for a large diversity of turbulent behaviors: Aside from nonequilibrium statistical stationary states, we report the formation of a periodic pattern of spectral incoherent solitons, or the formation of different types of spectral singularities, e.g., dispersive shock waves and incoherent spectral collapse behaviors. We derive a mean-field kinetic equation that describes in detail the different turbulent regimes of the cavity and whose structure is formally analogous to the weak Langmuir turbulence kinetic equation in the presence of forcing and damping. A quantitative agreement is obtained between the simulations of the nonlinear Schrödinger equation with cavity boundary conditions and those of the mean-field kinetic equation and the corresponding singular integrodifferential reduction, without using adjustable parameters. We discuss the possible realization of a fiber cavity experimental setup in which the theoretical predictions can be observed and studied.