967 resultados para inactivation of samples


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of soil structure, i.e., the pores, is of vital importance in different fields of science and technology. Total pore volume (porosity), pore surface, pore connectivity and pore size distribution are some (probably the most important) of the geometric measurements of pore space. The technology of X-ray computed tomography allows us to obtain 3D images of the inside of a soil sample enabling study of the pores without disturbing the samples. In this work we performed a set of geometrical measures, some of them from mathematical morphology, to assess and quantify any possible difference that tillage may have caused on the soil. We compared samples from tilled soil with samples from a soil with natural vegetation taken in a very close area. Our results show that the main differences between these two groups of samples are total surface area and pore connectivity per unit pore volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The decrement in dopamine levels exceeds the loss of dopaminergic neurons in Parkinson’s disease (PD) patients and experimental models of PD. This discrepancy is poorly understood and may represent an important event in the pathogenesis of PD. Herein, we report that the rate-limiting enzyme in dopamine synthesis, tyrosine hydroxylase (TH), is a selective target for nitration following exposure of PC12 cells to either peroxynitrite or 1-methyl-4-phenylpyridiniun ion (MPP+). Nitration of TH also occurs in mouse striatum after MPTP administration. Nitration of tyrosine residues in TH results in loss of enzymatic activity. In the mouse striatum, tyrosine nitration-mediated loss in TH activity parallels the decline in dopamine levels whereas the levels of TH protein remain unchanged for the first 6 hr post MPTP injection. Striatal TH was not nitrated in mice overexpressing copper/zinc superoxide dismutase after MPTP administration, supporting a critical role for superoxide in TH tyrosine nitration. These results indicate that tyrosine nitration-induced TH inactivation and consequently dopamine synthesis failure, represents an early and thus far unidentified biochemical event in MPTP neurotoxic process. The resemblance of the MPTP model with PD suggests that a similar phenomenon may occur in PD, influencing the severity of parkisonian symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rice blast fungus, Magnaporthe grisea, generates enormous turgor pressure within a specialized cell called the appressorium to breach the surface of host plant cells. Here, we show that a mitogen-activated protein kinase, Mps1, is essential for appressorium penetration. Mps1 is 85% similar to yeast Slt2 mitogen-activated protein kinase and can rescue the thermosensitive growth of slt2 null mutants. The mps1–1Δ mutants of M. grisea have some phenotypes in common with slt2 mutants of yeast, including sensitivity to cell-wall-digesting enzymes, but display additional phenotypes, including reduced sporulation and fertility. Interestingly, mps1–1Δ mutants are completely nonpathogenic because of the inability of appressoria to penetrate plant cell surfaces, suggesting that penetration requires remodeling of the appressorium wall through an Mps1-dependent signaling pathway. Although mps1–1Δ mutants are unable to cause disease, they are able to trigger early plant-cell defense responses, including the accumulation of autofluorescent compounds and the rearrangement of the actin cytoskeleton. We conclude that MPS1 is essential for pathogen penetration; however, penetration is not required for induction of some plant defense responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a technique, methylation-specific PCR in situ hybridization (MSP-ISH), which allows for the methylation status of specific DNA sequences to be visualized in individual cells. We use MSP-ISH to monitor the timing and consequences of aberrant hypermethylation of the p16 tumor suppresser gene during the progression of cancers of the lung and cervix. Hypermethylation of p16 was localized only to the neoplastic cells in both in situ lesions and invasive cancers, and was associated with loss of p16 protein expression. MSP-ISH allowed us to dissect the surprising finding that p16 hypermethylation occurs in cervical carcinoma. This tumor is associated with infection of the oncogenic human papillomavirus, which expresses a protein, E7, that inactivates the retinoblastoma (Rb) protein. Thus, simultaneous Rb and p16 inactivation would not be needed to abrogate the critical cyclin D–Rb pathway. MSP-ISH reveals that p16 hypermethylation occurs heterogeneously within early cervical tumor cell populations that are separate from those expressing viral E7 transcripts. In advanced cervical cancers, the majority of cells have a hypermethylated p16, lack p16 protein, but no longer express E7. These data suggest that p16 inactivation is selected as the most effective mechanism of blocking the cyclin D–Rb pathway during the evolution of an invasive cancer from precursor lesions. These studies demonstrate that MSP-ISH is a powerful approach for studying the dynamics of aberrant methylation of critical tumor suppressor genes during tumor evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translesion synthesis at replication-blocking lesions requires the induction of proteins that are controlled by the SOS system in Escherichia coli. Of the proteins identified so far, UmuD′, UmuC, and RecA* were shown to facilitate replication across UV-light-induced lesions, yielding both error-free and mutagenic translesion-synthesis products. Similar to UV lesions, N-2-acetylaminofluorene (AAF), a chemical carcinogen that forms covalent adducts at the C8 position of guanine residues, is a strong replication-blocking lesion. Frameshift mutations are induced efficiently by AAF adducts when located within short repetitive sequences in a two-step mechanism; AAF adducts incorporate a cytosine across from the lesion and then form a primer-template misaligned intermediate that, upon elongation, yields frameshift mutations. Recently, we have shown that although elongation from the nonslipped intermediate depends on functional umuDC+ gene products, elongation from the slipped intermediate is umuDC+-independent but requires another, as yet biochemically uncharacterized, SOS function. We now show that in DNA Polymerase III-proofreading mutant strains (dnaQ49 and mutD5 strains), elongation from the slipped intermediate is highly efficient in the absence of SOS induction—in contrast to elongation from the nonslipped intermediate, which still requires UmuDC functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The α C protein of group B Streptococcus (GBS) is a major surface-associated antigen. Although its role in the biology and virulence of GBS has not been defined, it is opsonic and capable of eliciting protective immunity. The α C protein is widely distributed among clinical isolates and is a potential protein carrier and antigen in conjugate vaccines to prevent GBS infections. The structural gene for the α C protein, bca, has been cloned and sequenced. The protein encoded by bca is related to a class of surface-associated proteins of Gram-positive cocci involved in virulence and immunity. To investigate the potential roles of the α C protein, bca null mutants were generated in which the bca gene was replaced with a kanamycin resistance cassette via homologous recombination using a novel shuttle/suicide vector. Studies of lethality in neonatal mice showed that the virulence of the bca null mutants was attenuated 5- to 7-fold when compared with the isogenic wild-type strain A909. Significant differences in mortality occurred in the first 24 h, suggesting that the role of the α antigen is important in the initial stages of the infection. In contrast to A909, bca mutants were no longer killed by polymorphonuclear leukocytes in the presence of α-specific antibodies in an in vitro opsonophagocytic assay. In contrast to previous studies, α antigen expression does not appear to play a role in resistance to opsonophagocytosis in the absence of α-specific antibodies. In addition, antibodies to the α C protein did not passively protect neonatal mice from lethal challenge with bca mutants, suggesting that these epitopes are uniquely present within the α antigen as expressed from the bca gene. Therefore, the α C protein is important in the pathogenesis of GBS infection and is a target for protective immunity in the development of GBS vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In heart, a robust regulatory mechanism is required to counteract the regenerative Ca2+-induced Ca2+ release from the sarcoplasmic reticulum. Several mechanisms, including inactivation, adaptation, and stochastic closing of ryanodine receptors (RyRs) have been proposed, but no conclusive evidence has yet been provided. We probed the termination process of Ca2+ release by using a technique of imaging local Ca2+ release, or “Ca2+ spikes”, at subcellular sites; and we tracked the kinetics of Ca2+ release triggered by L-type Ca2+ channels. At 0 mV, Ca2+ release occurred and terminated within 40 ms after the onset of clamp pulses (0 mV). Increasing the open-duration and promoting the reopenings of Ca2+ channels with the Ca2+ channel agonist, FPL64176, did not prolong or trigger secondary Ca2+ spikes, even though two-thirds of the sarcoplasmic reticulum Ca2+ remained available for release. Latency of Ca2+ spikes coincided with the first openings but not with the reopenings of L-type Ca2+ channels. After an initial maximal release, even a multi-fold increase in unitary Ca2+ current induced by a hyperpolarization to −120 mV failed to trigger additional release, indicating absolute refractoriness of RyRs. When the release was submaximal (e.g., at +30 mV), tail currents did activate additional Ca2+ spikes; confocal images revealed that they originated from RyRs unfired during depolarization. These results indicate that Ca2+ release is terminated primarily by a highly localized, use-dependent inactivation of RyRs but not by the stochastic closing or adaptation of RyRs in intact ventricular myocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β)-mediated G1 arrest previously has been shown to specifically target inactivation of cyclin D:cyclin-dependent kinase (Cdk) 4/6 complexes. We report here that TGF-β-treated human HepG2 hepatocellular carcinoma cells arrest in G1, but retain continued cyclin D:Cdk4/6 activity and active, hypophosphorylated retinoblastoma tumor suppressor protein. Consistent with this observation, TGF-β-treated cells failed to induce p15INK4b, down-regulate CDC25A, or increase levels of p21CIP1, p27KIP1, and p57KIP2. However, TGF-β treatment resulted in the specific inactivation of cyclin E:Cdk2 complexes caused by absence of the activating Thr160 phosphorylation on Cdk2. Whole-cell lysates from TGF-β-treated cells showed inhibition of Cdk2 Thr160 Cdk activating kinase (CAK) activity; however, cyclin H:Cdk7 activity, a previously assumed mammalian CAK, was not altered. Saccharomyces cerevisiae contains a genetically and biochemically proven CAK gene, CAK1, that encodes a monomeric 44-kDa Cak1p protein unrelated to Cdk7. Anti-Cak1p antibodies cross-reacted with a 45-kDa human protein with CAK activity that was specifically down-regulated in response to TGF-β treatment. Taken together, these observations demonstrate that TGF-β signaling mediates a G1 arrest in HepG2 cells by targeting Cdk2 CAK and suggests the presence of at least two mammalian CAKs: one specific for Cdk2 and one for Cdk4/6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global regulator FNR (for fumarate nitrate reduction) controls the transcription of >100 genes whose products facilitate adaptation of Escherichia coli to growth under O2-limiting conditions. Previous Mössbauer studies have shown that anaerobically purified FNR contains a [4Fe-4S]2+ cluster that, on exposure to oxygen, is converted into a [2Fe-2S]2+ cluster, a process that decreases DNA binding by FNR. Using 57Fe Mössbauer spectroscopy of E. coli cells containing overexpressed FNR, we show here that the same cluster conversion also occurs in vivo on exposure to O2. Furthermore, the data show that a significant amount of the [4Fe-4S]2+ cluster is regenerated when the cells are shifted back to an anaerobic environment. The present study also demonstrates that 57Fe Mössbauer spectroscopy can be employed to study the in vivo behavior of (overexpressed) proteins. The use of this technique to study other iron-containing cell components is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several adult-onset neurodegenerative diseases are caused by genes with expanded CAG triplet repeats within their coding regions and extended polyglutamine (Qn) domains within the expressed proteins. Generally, in clinically affected individuals n ≥ 40. Glyceraldehyde 3-phosphate dehydrogenase binds tightly to four Qn disease proteins, but the significance of this interaction is unknown. We now report that purified glyceraldehyde 3-phosphate dehydrogenase is inactivated by tissue transglutaminase in the presence of glutathione S-transferase constructs containing a Qn domain of pathological length (n = 62 or 81). The dehydrogenase is less strongly inhibited by tissue transglutaminase in the presence of constructs containing shorter Qn domains (n = 0 or 10). Purified α-ketoglutarate dehydrogenase complex also is inactivated by tissue transglutaminase plus glutathione S-transferase constructs containing pathological-length Qn domains (n = 62 or 81). The results suggest that tissue transglutaminase-catalyzed covalent linkages involving the larger poly-Q domains may disrupt cerebral energy metabolism in CAG/Qn expansion diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the mechanisms responsible for the termination of Ca2+-activated Cl− currents (ICl(Ca)), simultaneous measurements of whole cell currents and intracellular Ca2+ concentration ([Ca2+]i) were made in equine tracheal myocytes. In nondialyzed cells, or cells dialyzed with 1 mM ATP, ICl(Ca) decayed before the [Ca2+]i decline, whereas the calcium-activated potassium current decayed at the same rate as [Ca2+]i. Substitution of AMP-PNP or ADP for ATP markedly prolonged the decay of ICl(Ca), resulting in a rate of current decay similar to that of the fall in [Ca2+]i. In the presence of ATP, dialysis of the calmodulin antagonist W7, the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor KN93, or a CaMKII-specific peptide inhibitor the rate of ICl(Ca) decay was slowed and matched the [Ca2+]i decline, whereas H7, a nonspecific kinase inhibitor with low affinity for CaMKII, was without effect. When a sustained increase in [Ca2+]i was produced in ATP dialyzed cells, the current decayed completely, whereas in cells loaded with 5′-adenylylimidodiphosphate (AMP-PNP), KN93, or the CaMKII inhibitory peptide, ICl(Ca) did not decay. Slowly decaying currents were repeatedly evoked in ADP- or AMP-PNP-loaded cells, but dialysis of adenosine 5′-O-(3-thiotriphosphate) or okadaic acid resulted in a smaller initial ICl(Ca), and little or no current (despite a normal [Ca2+]i transient) with a second stimulation. These data indicate that CaMKII phosphorylation results in the inactivation of calcium-activated chloride channels, and that transition from the inactivated state to the closed state requires protein dephosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological function of specific gene products often is determined experimentally by blocking their expression in an organism and observing the resulting phenotype. Chromophore-assisted laser inactivation using malachite green (MG)-tagged antibodies makes it possible to inactivate target proteins in a highly restricted manner, probing their temporally and spatially resolved functions. In this report, we describe the isolation and in vitro characterization of a MG-binding RNA motif that may enable the same high-resolution analysis of gene function specifically at the RNA level (RNA-chromophore-assisted laser inactivation). A well-defined asymmetric internal bulge within an RNA duplex allows high affinity and high specificity binding by MG. Laser irradiation in the presence of low concentrations of MG induces destruction of the MG-binding RNA but not of coincubated control RNA. Laser-induced hydrolysis of the MG-binding RNA is restricted predominantly to a single nucleotide within the bulge. By appropriately incorporating this motif into a target gene, transcripts generated by the gene may be effectively tagged for laser-mediated destruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basal forebrain complex, which includes the nucleus basalis magnocellularis (NBM), provides widespread cholinergic and γ-aminobutyric acid-containing projections throughout the brain, including the insular and pyriform cortices. A number of studies have implicated the cholinergic neurons in the mediation of learning and memory processes. However, the role of basal forebrain activity in information retrieval mechanisms is less known. The aim of the present study is to evaluate the effects of reversible inactivation of the NBM by tetrodotoxin (TTX, a voltage-sensitive sodium channel blocker) during the acquisition and retrieval of conditioned taste aversion (CTA) and to measure acetylcholine (ACh) release during TTX inactivation in the insular cortex, by means of the microdialysis technique in free-moving rats. Bilateral infusion of TTX in the NBM was performed 30 min before the presentation of gustative stimuli, in either the CTA acquisition trial or retrieval trial. At the same time, levels of extracellular ACh release were measured in the insular cortex. The behavioral results showed significant impairment in CTA acquisition when the TTX was infused in the NBM, whereas retrieval was not affected when the treatment was given during the test trial. Biochemical results showed that TTX infusion into the NBM produced a marked decrease in cortical ACh release as compared with the controls during consumption of saccharin in the acquisition trial. Depleted ACh levels were found during the test trial in all groups except in the group that received TTX during acquisition. These results suggest a cholinergic-dependent process during acquisition, but not during memory retrieval, and that NBM-mediated cholinergic cortical release may play an important role in early stages of learning, but not during recall of aversive memories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A remarkable instability at simple repeated sequences characterizes gastrointestinal cancer of the microsatellite mutator phenotype (MMP). Mutations in the DNA mismatch repair gene family underlie the MMP, a landmark for hereditary nonpolyposis colorectal cancer. These tumors define a distinctive pathway for carcinogenesis because they display a particular spectrum of mutated cancer genes containing target repeats for mismatch repair deficiency. One such gene is BAX, a proapoptotic member of the Bcl-2 family of proteins, which plays a key role in programmed cell death. More than half of colon and gastric cancers of the MMP contain BAX frameshifts in a (G)8 mononucleotide tract. However, the functional significance of these mutations in tumor progression has not been established. Here we show that inactivation of the wild-type BAX allele by de novo frameshift mutations confers a strong advantage during tumor clonal evolution. Tumor subclones with only mutant alleles frequently appeared after inoculation into nude mice of single-cell clones of colon tumor cell lines with normal alleles. In contrast, no clones of BAX-expressing cells were found after inoculation of homozygous cell clones without wild-type BAX. These results support the interpretation that BAX inactivation contributes to tumor progression by providing a survival advantage. In this context, survival analyses show that BAX mutations are indicators of poor prognosis for both colon and gastric cancer of the MMP.