952 resultados para in-channel dam
Resumo:
In underdense plasmas, the transverse ponderomotive force of an intense laser beam with Gaussian transverse profile expels electrons radially, and it can lead to an electron cavitation. An improved cavitation model with charge conservation constraint is applied to the determination of the width of the electron cavity. The envelope equation for laser spot size derived by using source-dependent expansion method is extended to including the electron cavity. The condition for self-guiding is given and illuminated by an effective potential for the laser spot size. The effects of the laser power, plasma density and energy dissipation on the self-guiding condition are discussed.
Resumo:
In this paper, some observations are made following a flash-flood that occurred in Stake Clough, a small tributary of the River Goyt, during the evening of 6 August 1996. The site was visited eight times between 8 August - 30 October 1996 to take samples and make observations on the stream. The flood scoured the bed of Stake Clough but more significantly, caused it to change course along the middle part of the floodplain. Initially after the flood, the numbers of insects in all stretches of the stream channel were low (100-200 m super(2)), but then gradually rose to population densities approaching ten times this figure. The benthos was dominated by the Chironomidae and also leuctrid stoneflies (Leuctra nigra, L. hippopus and L. inermis). On 8th August 1996, 12 mesh bags, each containing oak leaves, were placed in the stream and collected after 24 hours. These were also dominated by chironomids, and contained relatively high numbers of the caddis, Potamophylax cingulatus.
Resumo:
In a slow flow, on a smooth uniform substratum, a limited bed allows the existence of currents slow enough for benthic invertebrates. These conditions rarely occur naturally. The investigations carried out in this work aimed, on an intermediary scale, to define the influence of irregularities in the substratum on flow near the bottom. The substrata used were made of glass marbles. The investigations were carried out in a transparent channel of 70 cm in length and a rectangular section 10 x 5 cm. The data was analysed to study the general evolution of flow in terms of average speeds and the appearance of the turbulence near the bottom.
Resumo:
Mean velocity profiles were measured in the 5” x 60” wind channel of the turbulence laboratory at the GALCIT, by the use of a hot-wire anemometer. The repeatability of results was established, and the accuracy of the instrumentation estimated. Scatter of experimental results is a little, if any, beyond this limit, although some effects might be expected to arise from variations in atmospheric humidity, no account of this factor having been taken in the present work. Also, slight unsteadiness in flow conditions will be responsible for some scatter.
Irregularities of a hot-wire in close proximity to a solid boundary at low speeds were observed, as have already been found by others.
That Kármán’s logarithmic law holds reasonably well over the main part of a fully developed turbulent flow was checked, the equation u/ut = 6.0 + 6.25 log10 yut/v being obtained, and, as has been previously the case, the experimental points do not quite form one straight line in the region where viscosity effects are small. The values of the constants for this law for the best over-all agreement were determined and compared with those obtained by others.
The range of Reynolds numbers used (based on half-width of channel) was from 20,000 to 60,000.
Resumo:
This study investigates lateral mixing of tracer fluids in turbulent open-channel flows when the tracer and ambient fluids have different densities. Longitudinal dispersion in flows with longitudinal density gradients is investigated also.
Lateral mixing was studied in a laboratory flume by introducing fluid tracers at the ambient flow velocity continuously and uniformly across a fraction of the flume width and over the entire depth of the ambient flow. Fluid samples were taken to obtain concentration distributions in cross-sections at various distances, x, downstream from the tracer source. The data were used to calculate variances of the lateral distributions of the depth-averaged concentration. When there was a difference in density between the tracer and the ambient fluids, lateral mixing close to the source was enhanced by density-induced secondary flows; however, far downstream where the density gradients were small, lateral mixing rates were independent of the initial density difference. A dimensional analysis of the problem and the data show that the normalized variance is a function of only three dimensionless numbers, which represent: (1) the x-coordinate, (2) the source width, and (3) the buoyancy flux from the source.
A simplified set of equations of motion for a fluid with a horizontal density gradient was integrated to give an expression for the density-induced velocity distribution. The dispersion coefficient due to this velocity distribution was also obtained. Using this dispersion coefficient in an analysis for predicting lateral mixing rates in the experiments of this investigation gave only qualitative agreement with the data. However, predicted longitudinal salinity distributions in an idealized laboratory estuary agree well with published data.
Resumo:
When salmonid redds are disrupted by spates, the displaced eggs will drift downstream. The mean distance of travel, the types of locations in which the eggs resettle and the depth of reburial of displaced eggs are not known. Investigation of these topics under field conditions presents considerable practical problems, though the use of artificial eggs might help to overcome some of them. Attempts to assess the similarities and/or differences in performance between real and artificial eggs are essential before artificial eggs can validly be used to simulate real eggs. The present report first compares the two types of egg in terms of their measurable physical characteristics (e.g. dimensions and density). The rate at which eggs fall in still water will relate to the rate at which they are likely to resettle in flowing water in the field. As the rate of fall will be influenced by a number of additional factors (e.g. shape and surface texture) which are not easily measured directly, the rates of fall of the two types of egg have been compared directly under controlled conditions. Finally, comparisons of the pattern of settlement of the two types of egg in flowing water in an experimental channel have been made. Although the work was primarily aimed at testing the value of artificial eggs as a simulation of real eggs, several side issues more directly concerned with the properties of real eggs and the likely distance of drift in natural streams have also been explored. This is the first of three reports made on this topic by the author in 1984.
Resumo:
It is of value to know the approximate distance of travel at different stream discharges and/or water velocities, of salmonid eggs which have been displaced from redds by spates. This report describes studies in 20 m of stream channel upstream of the fish trap in Dubby Sike. Observations were made on the relation- ships between discharge and water depth and velocity and also on the relationships between water velocity and the settlement of artificial trout eggs. The main aim was to test the hypothesis that, at any given water velocity, eggs would drift smaller distances in a natural stream than in the experimental channels.
Resumo:
The thesis is divided into two parts. Part I generalizes a self-consistent calculation of residue shifts from SU3 symmetry, originally performed by Dashen, Dothan, Frautschi, and Sharp, to include the effects of non-linear terms. Residue factorizability is used to transform an overdetermined set of equations into a variational problem, which is designed to take advantage of the redundancy of the mathematical system. The solution of this problem automatically satisfies the requirement of factorizability and comes close to satisfying all the original equations.
Part II investigates some consequences of direct channel Regge poles and treats the problem of relating Reggeized partial wave expansions made in different reaction channels. An analytic method is introduced which can be used to determine the crossed-channel discontinuity for a large class of direct-channel Regge representations, and this method is applied to some specific representations.
It is demonstrated that the multi-sheeted analytic structure of the Regge trajectory function can be used to resolve apparent difficulties arising from infinitely rising Regge trajectories. Also discussed are the implications of large collections of "daughter trajectories."
Two things are of particular interest: first, the threshold behavior in direct and crossed channels; second, the potentialities of Reggeized representations for us in self-consistent calculations. A new representation is introduced which surpasses previous formulations in these two areas, automatically satisfying direct-channel threshold constraints while being capable of reproducing a reasonable crossed channel discontinuity. A scalar model is investigated for low energies, and a relation is obtained between the mass of the lowest bound state and the slope of the Regge trajectory.