951 resultados para immunocompromised host


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schistosomes, ancestors and recent species, have pervaded many hosts and several phylogenetic levels of immunity, causing an evolutionary pressure to eosinophil lineage expression and response. Schistosoma mansoni adult worms have capitalized on the apparent adversity of living within the mesenteric veins, using the dispersion of eggs and antigens to other tissues besides intestines to set a systemic activation of several haematopoietic lineages, specially eosinophils and monocytes/macrophages. This activation occurs in bone marrow, spleen, liver, lymph nodes, omental and mesenteric milky spots (activation of the old or primordial and recent or new lymphomyeloid tissue), increasing and making easy the migration of eosinophils, monocytes and other cells to the intestinal periovular granulomas. The exudative perigranulomatous stage of the periovular reaction, which present hystolitic characteristics, is then exploited by the parasites, to release the eggs into the intestinal lumen. The authors hypothesize here that eosinophils, which have a long phylogenic story, could participate in the parasite - host co-evolution, specially with S. mansoni, operating together with monocytes/ macrophages, upon parasite transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibody-drug conjugates (ADC) are emerging as powerful treatment strategies with outstanding target-specificity and high therapeutic activity in patients with cancer. Brentuximab vedotin represents a first-in-class ADC directed against CD30(+) malignancies. We hypothesized that its sustained clinical responses could be related to the stimulation of an anticancer immune response. In this study, we demonstrate that the dolastatin family of microtubule inhibitors, from which the cytotoxic component of brentuximab vedotin is derived, comprises potent inducers of phenotypic and functional dendritic cell (DC) maturation. In addition to the direct cytotoxic effect on tumor cells, dolastatins efficiently promoted antigen uptake and migration of tumor-resident DCs to the tumor-draining lymph nodes. Exposure of murine and human DCs to dolastatins significantly increased their capacity to prime T cells. Underlining the requirement of an intact host immune system for the full therapeutic benefit of dolastatins, the antitumor effect was far less pronounced in immunocompromised mice. We observed substantial therapeutic synergies when combining dolastatins with tumor antigen-specific vaccination or blockade of the PD-1-PD-L1 and CTLA-4 coinhibitory pathways. Ultimately, treatment with ADCs using dolastatins induces DC homing and activates cellular antitumor immune responses in patients. Our data reveal a novel mechanism of action for dolastatins and provide a strong rationale for clinical treatment regimens combining dolastatin-based therapies, such as brentuximab vedotin, with immune-based therapies. Cancer Immunol Res; 2(8); 741-55. ©2014 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parasitic specificity of larval, nymph and adult Amblyomma cajennense on six different host species: Oryctolagus cuniculus, Rattus norvegicus, Gallus gallus domesticus, Anas platyrhynchus, Coturnix coturnix and Streptopelia decorata is described. In terms of the numbers of larvae and nymphs recovered, O. cuniculus was the best host species. The modal day for drop-off of larvae and nymphs was day three for the mammal hosts, but variable in the birds. We conclude that adult A. cajennense have a strong degree of specificity due to the fact that the tick failed to complete its life cycle on any of the evaluated hosts. The immature stages, on the other hand, showed a low level of specificity, most especially in the larval stage, indicating the existence of secondary hosts which probably serve as dispersers in the wild. The results also indicated a variable drop-off rhythm for larvae and nymphs in two periods, diurnal (6-18 hr) and nocturnal (18-6 hr), which differed depending upon the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type three secretion system (T3SS) operons of Chlamydiales bacteria are distributed in different clusters along their chromosomes and are conserved at both the level of sequence and genetic organization. A complete characterization of the temporal expression of multiple T3SS components at the transcriptional and protein levels has been performed in Parachlamydia acanthamoebae, replicating in its natural host cell Acanthamoeba castellanii. The T3SS components were classified in four different temporal clusters depending on their pattern of expression during the early, mid- and late phases of the infectious cycle. The putative T3SS transcription units predicted in Parachlamydia are similar to those described in Chlamydia trachomatis, suggesting that T3SS units of transcriptional expression are highly conserved among Chlamydiales bacteria. The maximal expression and activation of the T3SS of Parachlamydia occurred during the early to mid-phase of the infectious cycle corresponding to a critical phase during which the intracellular bacterium has (1) to evade and/or block the lytic pathway of the amoeba, (2) to differentiate from elementary bodies (EBs) to reticulate bodies (RBs), and (3) to modulate the maturation of its vacuole to create a replicative niche able to sustain efficient bacterial growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The link between host MHC (major histocompatibility complex) genotype and malaria is largely based on correlative data with little or no experimental control of potential confounding factors. We used an experimental mouse model to test for main effects of MHC-haplotypes, MHC heterozygosity, and MHC x parasite clone interactions. We experimentally infected MHC-congenic mice (F2 segregants, homo- and heterozygotes, males and females) with one of two clones of Plasmodium chabaudi and recorded disease progression. RESULTS: We found that MHC haplotype and parasite clone each have a significant influence on the course of the disease, but there was no significant host genotype by parasite genotype interaction. We found no evidence for overdominance nor any other sort of heterozygote advantage or disadvantage. CONCLUSION: When tested under experimental conditions, variation in the MHC can significantly influence the course of malaria. However, MHC heterozygote advantage through overdominance or dominance of resistance cannot be assumed in the case of single-strain infections. Future studies might focus on the interaction between MHC heterozygosity and multiple-clone infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ectoparasitic batflies were studied on 12 species of phyllostomid bats, by making 35 nightly collections of bats using mist nets at the "Panga" Ecological Reservation near Uberlândia, State of Minas Gerais, southeastern Brazil, from August 1989 to July 1990. Eleven species of Streblidae and one of Nycteribiidae were collected on 12 species of bats. Prevalence of ectoparasitic flies was lower than those reported by other authors for the New World and may be the result of the lack of caves in the study area, causing bats to roost in less favorable locations, forming smaller colonies. The fly, Trichobius joblingi Wenzel, was found on Carollia perspicillata (Linnaeus), showing preference for adult male bats. This could be explained by the predominance of males in the bat colonies, and by the fact that females rest in isolation during the reproductive period making them less exposed to the parasites. The streblid flies, Aspidoptera falcata Wenzel and Megistopoda proxima (Séguy), were found on Sturnira lilium (Geoffroy). A. falcata occurred mainly on young and adult females, whereas M. proxima did not show any preferences relative to the reproductive condition of the host. Ecological factors are important in determining differential numbers of parasites occurring on the different sexes, ages and reproductive state of the hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success of allogeneic hematopoietic cell transplantation is limited by acute graft-versus-host disease (GvHD), a severe complication accompanied by high mortality rates. Yet, the molecular mechanisms initiating this disease remain poorly defined. In this study, we show that, after conditioning therapy, intestinal commensal bacteria and the damage-associated molecular pattern uric acid contribute to Nlrp3 inflammasome-mediated IL-1β production and that gastrointestinal decontamination and uric acid depletion reduced GvHD severity. Early blockade of IL-1β or genetic deficiency of the IL-1 receptor in dendritic cells (DCs) and T cells improved survival. The Nlrp3 inflammasome components Nlrp3 and Asc, which are required for pro-IL-1β cleavage, were critical for the full manifestation of GvHD. In transplanted mice, IL-1β originated from multiple intestinal cell compartments and exerted its effects on DCs and T cells, the latter being preferentially skewed toward Th17. Compatible with these mouse data, increased levels of active caspase-1 and IL-1β were found in circulating leukocytes and intestinal GvHD lesions of patients. Thus, the identification of a crucial role for the Nlrp3 inflammasome sheds new light on the pathogenesis of GvHD and opens a potential new avenue for the targeted therapy of this severe complication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermediate hosts of Angiostrongylus costaricensis are terrestrian molluscs, mostly of the family Veronicellidae. The present work aimed at clarifying more accurately the sites of penetration and the migratory routes of A. costaricensis in the tissue slugs and at verifying the pattern of the perilarval reaction at different times of infection. Slugs were individually infected with 5,000 L1, and killed from 30 min to 30 days after infection. From 30 min up to 2 hr after infection, L1 were found within the lumen of different segments of the digestive tube having their number diminished in more advanced times after exposition until complete disappearance. After 30 min of exposition, percutaneous infection occurred, simultaneously to oral infection. Perilarval reaction was observed from 2 hr of infection around larvae in fibromuscular layer, appearing later (after 6 hr) around larvae located in the viscera. A pre-granulomatous reaction was characterized by gradative concentration of amebocytes around larvae, evolving two well-organized granulomas. In this work we confirmed the simultaneous occurrence of oral and percutaneous infections. Perilarval reaction, when very well developed, defined typical granulomatous structure, including epithelioid cell transformation. The infection also caused a systemic mobilization of amebocytes and provoked amebocyte-endothelium interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larval stages and adults of Procamallanus (Spirocamallanus) pereirai Annereaux, 1946 are described from naturally infected Paralonchurus brasiliensis (Steindachner) (Sciaenidae) from the coast of the State of Rio de Janeiro, Brazil. The translucent first-stage larvae have a denticulate process at the anterior end, no buccal capsule or esophagus undifferentiated into anterior muscular and posterior glandular parts and an elongate tail; third-stage larvae have a tail with three terminal projections, a buccal capsule divided into an anterior portion with 12-20 ridges running to the left and a posterior smooth portion, and an esophagus with muscular and glandular regions. Fourth-stage larvae exhibit a buccal capsule lacking a distinct basal ring with ridges running to the right and a tail with two terminal processes, as in adults. New host records are reported and their role in its life-cycle are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract :The majority of land plants form the symbiosis with arbuscular mycorrhizal fungi (AMF). The AM symbiosis has existed for hundreds of millions of years but little or no specificity seems to have co- evolved between the partners and only about 200 morphospecies of AMF are known. The fungi supply the plants most notably with phosphate in exchange for carbohydrates. The fungi improve plant growth, protect them against pathogens and herbivores and the symbiosis plays a key role in ecosystem productivity and plant diversity. The fungi are coenocytic, grow clonally and no sexual stage in their life cycle is known. For these reasons, they are presumed ancient asexuals. Evidence suggests that AMF contain populations of genetically different nucleotypes coexisting in a common cytoplasm. Consequently, the nucleotype content of new clonal offspring could potentially be altered by segregation of nuclei at spore formation and by genetic exchange between different AMF. Given the importance of AMF, it is surprising that remarkably little is known about the genetics and genomics of the fungi.The main goal of this thesis was to investigate the combined effects of plant species differences and of genetic exchange and segregation in AMF on the symbiosis. This work showed that single spore progeny can receive a different assortment of nucleotypes compared to their parent and compared to other single spore progeny. This is the first direct evidence that segregation occurs in AMF. We then showed that both genetic exchange and segregation can lead to new progeny that differentially alter plant growth compared to their parents. We also found that genetic exchange and segregation can lead to different development of the fungus during the establishment of the symbiosis. Finally, we found that a shift of host species can differentially alter the phenotypes and genotypes of AMF progeny obtained by genetic exchange and segregation compared to their parents.Overall, this study confirms the multigenomic state of the AMF Glomus intraradices because our findings are possible only if the fungus contains genetically different nuclei. We demonstrated the importance of the processes of genetic exchange and segregation to produce, in a very short time span, new progeny with novel symbiotic effects. Moreover, our results suggest that different host species could affect the fate of different nucleotypes following genetic exchange and segregation in AMF, and can potentially contribute to the maintenance of genetic diversity within AMF individuals. This work brings new insights into understanding how plants and fungi have coevolved and how the genetic diversity in AMF can be maintained. We recommend that the intra-ir1dividual AMF diversity and these processes should be considered in future research on this symbiosis.Résumé :La majorité des plantes terrestres forment des symbioses avec les champignons endomycorhiziens arbusculaires (CEA). Cette symbiose existe depuis plusieurs centaines de millions d'années mais peu ou pas de spécificité semble avoir co-évoluée entre les partenaires et seulement 200 morpho-espèces de CEA sont connues. Le champignon fournit surtout aux plantes du phosphate en échange de carbohydrates. Le champignon augmente la croissance des plantes, les protège contre des pathogènes et herbivores et la symbiose joue un rôle clé dans la productivité des écosystèmes et de la diversité des plantes. Les CEA sont coenocytiques, se reproduisent clonalement et aucune étape sexuée n'est connue dans leur cycle de vie. Pour ces raisons, ils sont présumés comme anciens asexués. Des preuves suggèrent que les CEA ont des populations de nucleotypes différents coexistant dans un cytoplasme commun. Par conséquent, le contenu en nucleotype des nouveaux descendants clonaux pourrait être altéré par la ségrégation des noyaux lors de la fonnation des spores et par l'échange génétique entre différents CEA. Etant donné l'importance des CEA, il est surprenant que si peu soit connu sur la génétique et la génomique du champignon.Le principal but de cette thèse a été d'étudier les effets combinés de différentes espèces de plantes et des mécanismes d'échange génétique et de ségrégation chez les CEA sur la symbiose. Ce travail a montré que chaque nouvelle spore produite pouvait recevoir un assortiment différent de noyaux comparé au parent ou comparé à d'autres nouvelles spores. Ceci est la première preuve directe que la ségrégation peut se produire chez les CEA. Nous avons ensuite montré qu'à la fois l'échange génétique et la ségrégation pouvaient mener à de nouveaux descendants qui altèrent différemment la croissance des plantes, comparé à leurs parents. Nous avons également trouvé que l'échange génétique et la ségrégation pouvaient entraîner des développements différents du champignon pendant l'établissement de la symbiose. Pour finir, nous avons trouvé qu'un changement d'espèce de l'hôte pouvait altérer différemment les phénotypes et génotypes des descendants issus d'échange génétique et de ségrégation, comparé à leurs parents.Globalement, cette étude confirme l'état multigénomique du CEA Glumus intraradices car nous résultats sont possibles seulement si le champignon possède des noyaux génétiquement différents. Nous avons démontrés l'importance des mécanismes d'échange génétique et de ségrégation pour produire en très peu de temps de nouveaux descendants ayant des effets symbiotiques nouveaux. De plus, nos résultats suggèrent que différentes espèces de plantes peuvent agir sur le devenir des nucleotypes après l'échange génétique et la ségrégation chez les CEA, et pourraient contribuer à la maintenance de la diversité génétique au sein d'un même CEA. Ce travail apporte des éléments nouveaux pour comprendre comment les plantes et les champignons ont coévolué et comment la diversité génétique chez les CEA peut être maintenue. Nous recommandons de considérer la diversité génétique intra-individuelle des CEA et ces mécanismes lors de futures recherches sur cette symbiose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through its life cycle from the insect vector to mammalian hosts Trypanosoma cruzi has developed clever strategies to reach the intracellular milieu where it grows sheltered from the hosts' immune system. We have been interested in several aspects of in vitro interactions of different infective forms of the parasite with cultured mammalian cells. We have observed that not only the classically infective trypomastigotes but also amastigotes, originated from the extracellular differentiation of trypomastigotes, can infect cultured cells. Interestingly, the process of invasion of different parasite infective forms is remarkably distinct and also highly dependent on the host cell type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV). In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integration of kDNA sequences within the genome of the host cell shown by PCR amplification with primers to the conserved Trypanosoma cruzi kDNA minicircle sequence was confirmed by Southern hybridization with specific probes. The cells containing the integrated kDNA sequences were then perpetuated as transfected macrophage subclonal lines. The kDNA transfected macrophages expressed membrane antigens that were recognized by antibodies in a panel of sera from ten patients with chronic Chagas disease. These antigens barely expressed in the membrane of uninfected, control macrophage clonal lines were recognized neither by factors in the control, non-chagasic subjects nor in the chagasic sera. This finding suggests the presence of an autoimmune antibody in the chagasic sera that recognizes auto-antigens in the membrane of T. cruzi kDNA transfected macrophage subclonal lines.