914 resultados para hyperbranched poly-l-lysine
Resumo:
The low molecular weight glutenin subunits (LMW-GS) are major components of the glutenin polymers which determine the elastomeric properties of wheat (Triticum aestivum L.) gluten and dough. They comprise a complex mixture of components and have proved to be difficult to purify for detailed characterisation. The mature LMW subunit proteins comprise two structural domains, with one domain consisting of repeated sequences based on short peptide motifs. DNA sequences encoding this domain and a whole subunit were expressed in Escherichia coli and the recombinant proteins purified. Detailed comparisons by spectroscopy (CD, FT-IR) and dynamic light scattering indicated that the repetitive and non-repetitive domains of the proteins formed different structures with the former having an extended conformation with an equilibrium between poly-L-proline II-like structure and type II’ b-turns, and the latter a more compact globular structure rich in a-helix. Although the structures of these two domains appear to form independently, dynamic light scattering of the whole subunit dissolved in trifluoroethanol(TFE) suggested that they interact, leading to a more compact conformation. These observations may have relevance to the role of the LMW-GS in gluten structure and functionality.
Resumo:
Two-component systems capable of self-assembling into soft gel-phase materials are of considerable interest due to their tunability and versatility. This paper investigates two-component gels based on a combination of a L-lysine-based dendron and a rigid diamine spacer (1,4-diaminobenzene or 1,4-diaminocyclohexane). The networked gelator was investigated using thermal measurements, circular dichroism, NMR spectroscopy and small angle neutron scattering (SANS) giving insight into the macroscopic properties, nanostructure and molecular-scale organisation. Surprisingly, all of these techniques confirmed that irrespective of the molar ratio of the components employed, the "solid-like" gel network always consisted of a 1:1 mixture of dendron/diamine. Additionally, the gel network was able to tolerate a significant excess of diamine in the "liquid-like" phase before being disrupted. In the light of this observation, we investigated the ability of the gel network structure to evolve from mixtures of different aromatic diamines present in excess. We found that these two-component gels assembled in a component-selective manner, with the dendron preferentially recognising 1,4-diaminobenzene (>70%). when similar competitor diamines (1,2- and 1,3-diaminobenzene) are present. Furthermore, NMR relaxation measurements demonstrated that the gel based oil 1,4-diaminobenzene was better able to form a selective ternary complex with pyrene than the gel based oil 1,4-diaminocyclohexane, indicative of controlled and selective pi-pi interactions within a three-component assembly. As such, the results ill this paper demonstrate how component selection processes in two-component gel systems call control hierarchical self-assembly.
Resumo:
This paper compares and contrasts, for the first time, one- and two-component gelation systems that are direct structural analogues and draws conclusions about the molecular recognition pathways that underpin fibrillar self-assembly. The new one-component systems comprise L-lysine-based dendritic headgroups covalently connected to an aliphatic diamine spacer chain via an amide bond, One-component gelators with different generations of headgroup (from first to third generation) and different length spacer chains are reported. The self-assembly of these dendrimers in toluene was elucidated using thermal measurements, circular dichroism (CD) and NMR spectroscopies, scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS). The observations are compared with previous results for the analogous two-component gelation system in which the dendritic headgroups are bound to the aliphatic spacer chain noncovalently via acid-amine interactions. The one-component system is inherently a more effective gelator, partly as a consequence of the additional covalent amide groups that provide a new hydrogen bonding molecular recognition pathway, whereas the two-component analogue relies solely on intermolecular hydrogen bond interactions between the chiral dendritic headgroups. Furthermore, because these amide groups are important in the assembly process for the one-component system, the chiral information preset in the dendritic headgroups is not always transcribed into the nanoscale assembly, whereas for the two-component system, fiber formation is always accompanied by chiral ordering because the molecular recognition pathway is completely dependent on hydrogen bond interactions between well-organized chiral dendritic headgroups.
Resumo:
The role of clavulanic acid, an unstable antibiotic produced by Streptomyces clavuligerus, in biomass accumulation and production of clavulanic acid in batch cultures of the organism was examined. The organism was grown in a medium containing either 20 g/l lysine, 1 g/l lysine or 1 g/l lysine supplemented with degraded clavulanic acid as nitrogen sources. Biomass accumulation was highest in cultures grown with supplemented degraded clavulanic acid and reached a maximum of 2.2 g/l, compared with 1.5 g/l when lysine only was used. The yield coefficient for clavulanic acid production was again highest in cultures grown with supplemented degraded clavulanic acid, with a Y-p/x, value of 2 mg/g compared with Y-p/x value of 1.5 mg/g in 20 g/l lysine. No clavulanic acid was produced in cultures containing non-supplemented 1 g/l lysine. Non-degraded clavulanic, acid was added at 60 h to non-producing cultures of the organism containing 1 g/l lysine only. Clavulanic acid concentration immediately decreased on addition from 0.04 g/l over a period of 20 h, then remained constant at 0.02 g/l for a further 30 h until the end of the cultivation. This suggests that the rate of degradation was equivalent to the rate of production of clavulanic acid following a period of initial additive degradation. These results indicate that clavulanic acid is both produced and degraded in cultures of S. clavuligerus and that the products of degradation are used by the organism, resulting in further production of the antibiotic. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
A novel Gram-positive, aerobic, catalase-negative, coccus-shaped organism originating from tobacco was characterized using phenotypic and molecular taxonomic methods. The organism contained a cell wall murein based on L-lysine (variation A4 alpha, type L-lysine-L-glutamic acid), synthesized long-chain cellular fatty acids of the straight-chain saturated and monounsaturated types (with C(16:1)omega 9, C-16:0 and C(18:1)omega 9 predominating) and possessed a DNA G+C content of 46 mol%. Based on morphological, biochemical and chemical characteristics, the coccus-shaped organism did not conform to any presently recognized taxon. Comparative 16S rRNA gene sequencing studies confirmed the distinctiveness of the unknown coccus, with the bacterium displaying sequence divergence values of greater than 7% with other recognized Gram-positive taxa. Treeing analysis reinforced its distinctiveness, with the unidentified organism forming a relatively long subline branching at the periphery of an rRNA gene sequence cluster which encompasses the genera Alloiococcus, Allolustis, Alkalibacterium, Atopostipes, Dolosigranulum and Marinilactibacillus. Based on phenotypic and molecular phylogenetic evidence, it is proposed that the unknown organism from tobacco be classified as a new genus and species, Atopococcus tabaci gen. nov., sp. nov. The type strain of Atopococcus tabaci is CCUG 48253(T) (= CIP 108502(T)).
Resumo:
An unknown Gram-positive, catalase-negative, facultatively anaerobic, non-spore-forming, rod-shaped bacterium originating from semen of a pig was characterized using phenotypic, molecular chemical and molecular phylogenetic methods. Chemical studies revealed the presence of a directly cross-linked cell wall murein based on L-lysine and a DNA G + C content of 39 mol%. Comparative 16S rRNA gene sequencing showed that the unidentified rod-shaped organism formed a hitherto unknown subline related, albeit loosely, to Alkalibacterium olivapovliticus, Alloiococcus otitis, Dolosigranulum pigrum and related organisms, in the low-G + C-content Gram-positive bacteria. However, sequence divergence values of > 11 % from these recognized taxa. clearly indicated that the novel bacterium represents a separate genus. Based on phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium from pig semen be classified as a new genus and species, Allofustis seminis gen. nov., sp. nov. The type strain is strain 01-570-1(T) (=CCUG 45438(T)=CIP 107425(T)).
Resumo:
Four alkyl substituted β-lactones were investigated as monomers in ring opening polymerisation to produce a family of poly(3-hydroxyalkanoate)s. Homopolymers were synthesised using a robust aluminium salen catalyst, resulting in polymers with low dispersity (Đ < 1.1) and predictable molecular weights. ABA triblock copolymers were prepared using poly(L-lactic acid) as the A block and the aforementioned poly(3-hydroxyalkanoate) as the B block via a sequential addition method. Characterisation of these copolymers determined they were well controlled with low dispersities and predictable molecular weight. DSC analysis determined copolymers prepared from β-butyrolactone or β-valerolactone yielded polymers with tunable and predictable thermal properties. Copolymers prepared from β-heptanolactone yielded a microphase separated material as indicated by SAXS, with two distinct Tgs. The polymers could be readily cast into flexible films and their improved tensile properties were explored.
Resumo:
Schwann cells (SCs) are the supporting cells of the peripheral nervous system and originate from the neural crest. They play a unique role in the regeneration of injured peripheral nerves and have themselves a highly unstable phenotype as demonstrated by their unexpectedly broad differentiation potential. Thus, SCs can be considered as dormant, multipotent neural crest-derived progenitors or stem cells. Upon injury they de-differentiate via cellular reprogramming, re-enter the cell cycle and participate in the regeneration of the nerve. Here we describe a protocol for efficient generation of neurospheres from intact adult rat and murine sciatic nerve without the need of experimental in vivo pre-degeneration of the nerve prior to Schwann cell isolation. After isolation and removal of the connective tissue, the nerves are initially plated on poly-D-lysine coated cell culture plates followed by migration of the cells up to 80% confluence and a subsequent switch to serum-free medium leading to formation of multipotent neurospheres. In this context, migration of SCs from the isolated nerve, followed by serum-free cultivation of isolated SCs as neurospheres mimics the injury and reprograms fully differentiated SCs into a multipotent, neural crest-derived stem cell phenotype. This protocol allows reproducible generation of multipotent Schwann cell-derived neurospheres from sciatic nerve through cellular reprogramming by culture, potentially marking a starting point for future detailed investigations of the de-differentiation process.
Resumo:
Cells are able to detect and respond to mechanical cues from their environment. Previous studies have investigated this mechanosensitivity on various cell types, including neural cells such as astrocytes. In this study, we have carefully optimized polyacrylamide gels, commonly used as compliant growth substrates, considering their homogeneity in surface topography, mechanical properties, and coating density, and identified several potential pitfalls for the purpose of mechanosensitivity studies. The resulting astrocyte response to growth on substrates with shear storage moduli of G` = 100 Pa and G` = 10 kPa was then evaluated as a function of coating density of poly-D-lysine using quantitative morphometric analysis. Astrocytes cultured on stiff substrates showed significantly increased perimeter, area, diameter, elongation, number of extremities and overall complexity if compared to those cultured on compliant substrates. A statistically significant difference in the overall morphological score was confirmed with an artificial intelligence-based shape analysis. The dependence of the cells` morphology on PDL coating density seemed to be weak compared to the effect of the substrate stiffness and was slightly biphasic, with a maximum at 10-100 mu g ml(-1) PDL concentration. Our finding suggests that the compliance of the surrounding tissue in vivo may influence astrocyte morphology and behavior.
Resumo:
A new aliphatic block copolyester was synthesized in bulk from transesterification techniques between poly((R)-3-hydroxybutyrate) (PHB) and poly(isosorbide succinate) (PIS). Additionally, other two block copolyesters were synthesized in bulk either from transesterification reactions involving PHB and poly(l-lactide) (PLLA) or from ring-opening copolymerization of l-lactide and hydroxyl-terminated PHB, as result of a previous transesterification reactions with isosorbide. Two-component blends of PHB and PIS or PLLA were also prepared as comparative systems. SEC, MALDI-TOF mass spectrometry (MALDI-TOFMS), (1)H and (13)C NMR spectroscopy, WAXD, solubility tests, and TG thermal analysis were used for characterization. The block copolymer structures of the products were evidenced by MALDI-TOFMS, (13)C NMR, and WAXD data. The block copolymers and the corresponding binary blends presented different solubility properties, as revealed by solubility tests. Although the incorporation of PIS sequences into PHB main backbone did not enhance the thermal stability of the product, it reduced its crystallinity, which could be advantageous for faster biodegradation rate. These products, composed of PHB and PIS or PLLA sequences, are an interesting alternative in biomedical applications.
Resumo:
There is a need of scientific evidence of claimed nutraceutical effects, but also there is a social movement towards the use of natural products and among them algae are seen as rich resources. Within this scenario, the development of methodology for rapid and reliable assessment of markers of efficiency and security of these extracts is necessary. The rat treated with streptozotocin has been proposed as the most appropriate model of systemic oxidative stress for studying antioxidant therapies. Cystoseira is a brown alga containing fucoxanthin and other carothenes whose pressure-assisted extracts were assayed to discover a possible beneficial effect on complications related to diabetes evolution in an acute but short-term model. Urine was selected as the sample and CE-TOF-MS as the analytical technique to obtain the fingerprints in a non-target metabolomic approach. Multivariate data analysis revealed a good clustering of the groups and permitted the putative assignment of compounds statistically significant in the classification. Interestingly a group of compounds associated to lysine glycation and cleavage from proteins was found to be increased in diabetic animals receiving vehicle as compared to control animals receiving vehicle (N6, N6, N6-trimethyl-L-lysine, N-methylnicotinamide, galactosylhydroxylysine, L-carnitine, N6-acetyl-N6-hydroxylysine, fructose-lysine, pipecolic acid, urocanic acid, amino-isobutanoate, formylisoglutamine. Fructoselysine significantly decreased after the treatment changing from a 24% increase to a 19% decrease. CE-MS fingerprinting of urine has provided a group of compounds different to those detected with other techniques and therefore proves the necessity of a cross-platform analysis to obtain a broad view of biological samples.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo neste estudo foi avaliar diferentes modelos ajustados às respostas de ganho de peso obtidas em experimento com aves da linhagem ISA Label no período de 1 a 28 dias de idade. Foram utilizados 480 pintos de ambos os sexos, distribuídos em delineamento inteiramente casualizado, em arranjo fatorial 4 X 2 (níveis de lisina X sexo), com três repetições, com 20 aves por unidade experimental. Uma ração basal foi formulada para atender às exigências das aves, exceto em lisina. Essa ração foi suplementada com L-lisina HCl em substituição ao ácido L-glutâmico, resultando em rações experimentais isonitrogênicas e isoenergéticas contendo 0,85; 0,97; 1,09 e 1,21% de lisina digestível. As respostas de ganho de peso foram ajustadas de acordo com os níveis de lisina da ração pelos modelos Linear Reponse Plateau (LRP), segmentado de duas inclinações, polinomial quadrático e exponencial. A primeira intersecção da equação quadrática com o platô do LRP também foi utilizado para estimar o nível ótimo. Os níveis de lisina digestível estimados pelos modelos LRP, segmentado e quadrático, foram 0,999; 1,010 e 1,116%, respectivamente. Na combinação do modelo quadrático com o LRP, a estimativa da exigência de lisina digestível foi de 1,041%. O modelo exponencial proporcionou estimativa de 1,066%, considerando 95% da resposta assintótica. Com base nos custos com alimentação, esse mesmo modelo gerou estimativas de 1,000 e 1,030% quando o custo do quilograma de L-lisina HCl foi R$ 8,50 e R$ 6,50, respectivamente. Considerando as limitações de cada um dos modelos propostos, o procedimento para estimar as exigências de lisina digestível pela primeira intersecção da equação quadrática com o platô do LRP foi o mais adequado para melhorar o ganho de peso das aves quando variáveis econômicas não foram consideradas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)