510 resultados para homeostatic thirst


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we investigated: (a) the effects of intracerebroventricular (i.c.v.) injections of moxonidine (an alpha(2)-adrenergic and imidazoline receptor agonist) on the ingestion of water and NaCl induced by 24 h of water deprivation; (b) the effects of i.c.v. injection of moxonidine on central angiotensin II (ANG II)- and carbachol-induced water intake; (c) the effects of the pre-treatment with i.c.v, idazoxan (an alpha(2)-adrenergic and imidazoline receptor antagonist) and RX 821002 (a selective alpha(2)-adrenergic antagonist) on the antidipsogenic action of central moxonidine. Male Holtzman rats had stainless steel cannulas implanted in the lateral cerebral ventricle. Intracerebroventricular injection of moxonidine (5 and 20 nmol/1 mu l) reduced the ingestion of 1.5% NaCl solution (4.1 +/- 1.1 and 2.9 +/- 2.5 ml/2 h, respectively vs. control = 7.4 +/- 2.1 ml/2 h) and water intake (2.0 +/- 0.6 and 0.3 +/- 0.2 ml/h, respectively vs. control = 13.0 +/- 1.4 ml/h) induced by water deprivation, Intracerebroventricular moxonidine (5 nmol/1 mu l) also reduced i.c.v. ANG Ii-induced water intake (2.8 +/- 0.9 vs. control = 7.9 +/- 1.7 ml/1 h) and i.c.v. moxonidine (10 and 20 nmol/1 mu l) reduced i.c.v. carbachol-induced water intake (4.3 +/- 1.7 and 2.1 +/- 0.9, respectively vs. control = 9.2 +/- 1.0 ml/1 h). The pre-treatment with i.c.v. idazoxan (40 to 320 nmol/1 mu l) abolished the inhibitory effect of i.c.v, moxonidine on carbachol-induced water intake. Intracerebroventricular idazoxan (320 nmol/1 mu l) partially reduced the inhibitory effect of moxonidine on water deprivation-induced water intake and produced only a tendency to reduce the antidipsogenic effect of moxonidine on ANG Ii-induced water intake. RX 821002 (80 and 160 nmol/1 mu l) completely abolished the antidipsogenic action of moxonidine on ANG Ii-induced water intake. The results show that central injections c: moxonidine strongly inhibit water and NaCl ingestion. They also suggest the involvement of central alpha(2)-adrenergic receptors in the antidipsogenic action of moxonidine. (C) 1999 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of carbachol (80 nmol/mul) injection into the amygdaloid nuclear complex (AMG) on sodium appetite and water intake was studied in male Holtzman rats weighing 240-270 g. Twenty-five satiated rats and 38 water-deprived rats were used in the experiment on water intake. In the experiment on sodium intake, 19 rats were injected with atropine + carbachol and 9 rats with hexamethonium + carbachol. After carbachol injection into the AMG, water intake decreased in rats submitted to 30 h of water deprivation (10.28 +/- 1.04 ml/120 min vs 0.69 +/- 0.22 ml/120 min). The decrease in water intake was blocked by prior local injection of a tropine (20 nmol/1 mul)(11.66 +/- 1.46 ml/120 min vs 0.69 +/- 0.22 ml/120 min), but not of hexamethonium (30 nmol/1 mul), into the AMG. In water-deprived animals, carbachol injection into the AMG caused a decrease in sodium chloride intake (6.16 +/- 1.82 ml/h vs 0.88 +/- 0.54 ml/h) which was blocked by previous injection of hexamethonium but not of a tropine. These results suggest that the cholinergic system of the AMG plays a role in the control of water and salt intake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both systemically administered furosemide and isoproterenol produce water intake (i.e., thirst). Curiously, however, in light of the endocrine and hemodynamic effects produced by these treatments, they are remarkably ineffective in eliciting intake of hypertonic saline solutions (i.e., operationally defined as sodium appetite). Recent work indicates that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nuclei (LPBN) markedly enhance a preexisting sodium appetite. The present studies establish that a de novo sodium appetite can be induced with LPBN-methysergide treatment under experimental conditions in which only water is typically ingested. The effects of bilateral LPBN injections of methysergide were studied on the intake of water and 0.3 M NaCl following acute (beginning 1 h after treatment) diuretic (furosemide)-induced sodium and water depletion and following subcutaneous isoproterenol treatment. With vehicle injected into the LPBN, furosemide treatment and isoproterenol injection both caused water drinking but essentially no intake of hypertonic saline. In contrast, bilateral treatment of the LPBN with methysergide induced the intake of 0.3 M NaCl after subcutaneous furosemide and isoproterenol. Water intake induced by subcutaneous furosemide or isoproterenol was not changed by LPBN-methysergide injections. The results indicate that blockade of LPBN-serotonin receptors produces a marked intake of hypertonic NaCl (i.e., a de novo sodium appetite) after furosemide treatment as well as subcutaneous isoproterenol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge about bird's heat stress is extensively discussed in the literature. From behavior data collected during the summer of 2000/2001 in an open-sided reduced scale model of a poultry barn, this study estimated the thermoneutral zone for female broiler breeders. The birds were electronically identified and the frequency of use of passage, indicating movement, and drinker, indicating thirst, where the antennas were placed, was recorded. Environmental data such as dry and wet bulb temperature were collected in the geometric center of the model and continuously registered by a datalogger. From the statistical analysis, it was possible to predict a real-time-based zone where the birds showed coherent behavior towards the use of the drinker and movement in the passage. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water intake was studied in albino rats with lesions in the lateral preoptic area, in the subfornical organ, and in both the lateral preoptic area and the subfornical organ. Drinking was induced by cellular dehydration, hypovolemia, hypotension (isoproterenol or caval ligation), and water deprivation. The animals with lesions in both areas showed a significant reduction in their water intake in response to cellular dehydration. Drinking due to extracellular dehydration was reduced in the animals that received only subfornical organ lesions, and was reduced even further in the animals with both areas ablated. The lesions in the subfornical organ were sufficient to reduce the thirst induced by caval ligation. The lesions in both areas inhibit water intake induced by caval ligation. Water intake induced by deprivation was reduced when both areas were destroyed. These findings demonstrate that both the lateral preoptic area and the subfornical organ are necessary for normal drinking in response to cellular dehydration, hypovolemia, and hypotension. There is further evidence that the lateral preoptic area and subfornical organ interact in the control of water intake induced by a variety of thirst challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Water intake induced by injection of 0.2 M-NaCl into the lateral preoptic area was increased by the injection of angiotensin II into the subfornical organ of rats. The injection of hypertonic saline solution into the subfornical organ increased water intake. However, the increase was lower than when the solution was injected into the lateral preoptic area. The injection of 4 μg angiotensin II into the lateral preoptic area further augmented this effect. 2. Injection of angiotensin II into the subfornical organ caused a rise in blood pressure which preceded the thirst-inducing effect. The injection of 0.2 M NaCl into the subfornical organ caused no changes in blood pressure, whereas the injection of angiotensin II into the lateral preoptic area caused some increase. 3. Dehydration of the lateral preoptic area by means of 0.2 M NaCl in combination with intravenous infusion of angiotensin II caused a summation of effects in terms of the water intake, without changing cardiovascular alterations induced by the infusion of angiotensin II. A summation of effects in the water intake, but not in blood pressure, was also observed when 0.5 M NaCl was infused intravenously in combination with the injection of angiotensin II into the subfornical organ and into the lateral preoptic area. 4. The results indicate that there are interactions between the subfornical organ and lateral preoptic area in the regulation of cardiovascular and thirst mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholinergic and adrenergic agonists and antagonists were injected directly into the subfornical organ (SFO), via implanted cannulae, and the volume of water ingested was recorded over a period of 1 hour after injection. Application of 2 nmol carbachol caused intense water intake in 100% of the animals (8.78±0.61 ml), with a very short intake latency. When the 2 nmol carbachol dose was preceded by increased doses of atropine, a progressive reduction in water intake was observed, with complete blockage of the thirst-inducing response to carbachol at the 20 nmol dose level with atropine. Followed by several doses of hexamethonium, the water intake caused by application of 2 nmol carbachol was reduced, although the response was not totally blocked. Injection of 80 nmol of nicotine had a significant thirst-inducing inducing effect in 50% of the animals studied (1.06±0.18 ml) and increase in water intake was further reduced by application of increased doses of hexamethonium. Raising the dose levels of noradrenaline into th SFO caused an increase in water intake although to a lesser degree than was observed after carbachol injection. When the 40 nmol dose of noradrenaline was preceded by increased doses of propranolol (5 to 40 nmol), there was a gradual reduction in water intake, with total blockage at the 40 nmol dose. Application of phentolamine in doses of 10 to 80 nmol caused no reduction in water intake after 40 nmol of noradrenaline. Application of isoproterenol at doses from 20 to 160 nmol into the SFO caused a dosedependent increase in water intake which was blocked by previous applications of propranolol. These results support the hypothesis that the water intake caused by chemical stimulation of the SFO is mainly due to muscarinic cholinergic receptors, although the influence of nicotinic receptors or participation of adrenergic mediation should not be ruled out. © 1984.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we investigated the effect of electrolytic lesion of the medial septal area (MSA) on the dipsogenic, natriuretic, kaliuretic and pressor responses elicited by intracerebroventricular (i.c.v.) injection of the cholinergic agonist carbachol. Freely moving rats with sham or MSA lesion (1-7 days and 14-18 days) and a stainless steel cannula implanted into the lateral ventricle were studied. In sham rats, i.c.v. injection of carbachol (7.5 nmol) produced an increase in water intake (10.2 ± 1.5 ml/h), mean arterial pressure (MAP) (35 ± 5 mmHg) and urinary Na+ and K+ excretion (551 ± 83 and 170 ± 17 μEq 120 min, resp.). The pressor (18 ± 3 and 14 ± 4 mmHg, resp.) and natriuretic responses (178 ± 58 and 172 ± 38 μEq 120 min) produced by i.c.v. carbachol in acute or chronic MSA-lesioned rats were reduced. No change was observed in urinary K+ excretion and a reduced water intake (5 ± 1.3 ml/h) was observed only in acute MSA-lesioned rats. These results suggest that the MSA plays an important role for the pressor and natriuretic responses induced by central cholinergic activation in rats. A small influence of this structure on water intake may also be suggested. © 1991.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we investigated the effect of the anteroventral third ventricle (AV3V) lesion on the pressor, bradycardic, natriuretic, kaliuretic, and dipsogenic responses induced by the injection of the cholinergic agonist carbachol into the lateral preoptic area (LPOA) in rats. Male Holtzman rats with sham or electrolytic AV3V lesion were implanted with stainless steel cannula directly into the LPOA. Injection of carbachol (7.5 nmol) into the LPOA of sham rats induced natriuresis (405 ± 66 μEq/120 min), kaliuresis (234 ± 44 μEq/120 min), water intake (9.5 ± 1.7 ml/60 min), bradycardia (-47 ± 11 bpm), and increase in mean arterial pressure (28 ± 3 mmHg). Acute AV3V lesion (1-5 days) reduced the natriuresis (12 ± 4 μEq/120 min), kaliuresis (128 ± 27 μEq/120 min), water intake (1.7 ± 0.9 ml/60 min), and pressor responses (14 ± 4 mmHg) produced by carbachol into the LPOA. Tachycardia instead of bradycardia was also observed. Chronic (14-18 days) AV3V lesion reduced only the pressor response (10 ± 2 mmHg) induced by carbachol. These results showed that acute, but not chronic, AV3V lesion reduced the natriuretic, kaliuretic, and dipsogenic responses to carbachol injection into the LPOA. The pressor response was reduced in acute or chronic AV3V-lesioned rats. The results suggest that the lateral areas may control the fluid and electrolyte balance independently from the AV3V region in chronic AV3V-lesioned rats. © 1992.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of increasing phosphorus (P) intake on P utilization was investigated in balance experiments using 12 Saanen goats, 4 to 5 mo of age and weighing 20 to 30 kg. The goats were given similar diets with various concentrations of P, and 32P was injected to trace the movement of P in the body. A P metabolism model with four pools was developed to compute P exchanges in the system. The results showed that P absorption, bone resorption, and excretion of urinary P and endogenous and fecal P all play a part in the homeostatic control of P. Endogenous fecal output was positively correlated to P intake (P < .01). Bone resorption of P was not influenced by intake of P, and P recycling from tissues to the blood pool was lesser for low P intake. Endogenous P loss occurred even in animals fed an inadequate P diet, resulting in a negative P balance. The extrapolated minimum endogenous loss in feces was .067 g of P/d. The minimum P intake for maintenance in Saanen goats was calculated to be .61 g of P/ d or .055 g of P/(kg.75·d) at 25 kg BW. Model outputs indicate greater P flow from the blood pool to the gut and vice versa as P intake increased. Intake of P did not significantly affect P flow from bone and soft tissue to blood. The kinetic model and regressions could be used to estimate P requirement and the fate of P in goats and could also be extrapolated to both sheep and cattle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inflammatory response is a protective process of the body to counteract xenobiotic penetration and injury, although in disease this response can become deregulated. There are endogenous biochemical pathways that operate in the host to keep inflammation under control. Here we demonstrate that the counter-regulator annexin 1 (AnxA1) is critical for controlling experimental endotoxemia. Lipopolysaccharide (LPS) markedly activated the AnxA1 gene in epithelial cells, neutrophils, and peritoneal, mesenteric, and alveolar macrophages-cell types known to function in experimental endotoxemia. Administration of LPS to AnxA1-deficient mice produced a toxic response characterized by organ injury and lethality within 48 hours, a phenotype rescued by exogenous application of low doses of the protein. In the absence of AnxA1, LPS generated a deregulated cellular and cytokine response with a marked degree of leukocyte adhesion in the microcirculation. Analysis of LPS receptor expression in AnxA1-null macrophages indicated an aberrant expression of Toll-like receptor 4. In conclusion, this study has detailed cellular and biochemical alterations associated with AnxA1 gene deletion and highlighted the impact of this protective circuit for the correct functioning of the homeostatic response to sublethal doses of LPS. Copyright © American Society for Investigative Pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the effects of AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), arginine vasopressin V 1 receptor antagonist as well as L-arginine, a nitric oxide donor and N W-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, injected into supraoptic nucleus (SON) on water and sodium intake induced by the injection of angiotensin II (ANGII). Male Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. The water intake after injection of saline SAL+SAL 0.15 M NaCl was 0.40±0.1 mL 2 h -1; SAL+ANGII increase water intake. Losartan decreased the water intake induced by ANGII. PD123319 injected prior to produce no change in water intake induced by ANGII. AVPA prior to ANGII reduced the water intake with a less intensity than losartan. L-arginine prior to ANGII decreases the water intake at a same intensity than losartan. L-NAME prior to ANGII potentiated the dipsogenic effect of ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the dipsogenic effect of ANGII. These results confirm the importance of SON in the control of water intake and strongly suggest that AT 1, V 1 receptors interact with nitrergic pathways within the SON influencing the dipsogenic effect of ANGII.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensing of blood gas tensions and/or pH is an evolutionarily conserved, homeostatic mechanism, observable in almost all species studied from invertebrates to man. In vertebrates, a shift from the peripheral O2-oriented sensing in fish, to the central CO2/pH sensing in most tetrapods reflects the specific behavioral requirements of these two groups whereby, in teleost fish, a highly O2-oriented control of breathing matches the ever-changing and low oxygen levels in water, whilst the transition to air-breathing increased the importance of acid-base regulation and O2-related drive, although retained, became relatively less important. The South American lungfish and tetrapods are probably sister groups, a conclusion backed up by many similar features of respiratory control. For example, the relative roles of peripheral and central chemoreceptors are present both in the lungfish and in land vertebrates. In both groups, the central CO2/pH receptors dominate the ventilatory response to hypercarbia (60-80), while the peripheral CO2/pH receptors account for 20-30. Some basic components of respiratory control have changed little during evolution. This review presents studies that reflect the current trends in the field of chemoreceptor function, and several laboratories are involved. An exhaustive review on the previous literature, however, is beyond the intended scope of the article. Rather, we present examples of current trends in respiratory function in vertebrates, ranging from fish to humans, and focus on both O2 sensing and CO2 sensing. As well, we consider the impact of chronic levels of hypoxia - a physiological condition in fish and in land vertebrates resident at high elevations or suffering from one of the many cardiorespiratory disease states that predispose an animal to impaired ventilation or cardiac output. This provides a basis for a comparative physiology that is informative about the evolution of respiratory functions in vertebrates and about human disease. Currently, most detail is known for mammals, for which molecular biology and respiratory physiology have combined in the discovery of the mechanisms underlying the responses of respiratory chemoreceptors. Our review includes new data on nonmammalian vertebrates, which stresses that some chemoreceptor sites are of ancient origin.