956 resultados para high-affinity IgE receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent phase 1 trial has demonstrated that the generation of tumor-reactive T lymphocytes by transfer of specific T-cell receptor (TCR) genes into autologous lymphocytes is feasible. However, compared with results obtained by infusion of tumor-infiltrating lymphocytes, the response rate observed in this first TCR gene therapy trial is low. One strategy that is likely to enhance the success rate of TCR gene therapy is the use of tumor-reactive TCRs with a higher capacity for tumor cell recognition. We therefore sought to develop standardized procedures for the selection of well-expressed, high-affinity, and safe human TCRs. Here we show that TCR surface expression can be improved by modification of TCR alpha and beta sequences and that such improvement has a marked effect on the in vivo function of TCR gene-modified T cells. From a panel of human, melanoma-reactive TCRs we subsequently selected the TCR with the highest affinity. Furthermore, a generally applicable assay was used to assess the lack of alloreactivity of this TCR against a large series of common human leukocyte antigen alleles. The procedures described in this study should be of general value for the selection of well- and stably expressed, high-affinity, and safe human TCRs for subsequent clinical testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell activation is triggered by the specific recognition of cognate peptides presented by MHC molecules. Altered peptide ligands are analogs of cognate peptides which have a high affinity for MHC molecules. Some of them induce complete T cell responses, i.e. they act as agonists, whereas others behave as partial agonists or even as antagonists. Here, we analyzed both early (intracellular Ca2+ mobilization), and late (interleukin-2 production) signal transduction events induced by a cognate peptide or a corresponding altered peptide ligand using T cell hybridomas expressing or not the CD8 alpha and beta chains. With a video imaging system, we showed that the intracellular Ca2+ response to an altered peptide ligand induces the appearance of a characteristic sustained intracellular Ca2+ concentration gradient which can be detected shortly after T cell interaction with antigen-presenting cells. We also provide evidence that the same altered peptide ligand can be seen either as an agonist or a partial agonist, depending on the presence of CD8beta in the CD8 co-receptor dimers expressed at the T cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T helper cell (Th) functions are crucial for proper immune defence against various intra- and extracellular pathogens. According to the specific immune responses, Th cells can be classified into subtypes, Th1 and Th2 cells being the most frequently characterized classes. Th1 and Th2 cells interact with other immune cells by regulating their functions with specific cytokine production. IFN, IL-2 and TNF- are the cytokines predominantly produced by Th1 cells whereas Th2 cells produce Th2-type cytokines, such as IL-4, IL-5 and IL-13. Upon TCR activation and in the presence of polarizing cytokines, Th cells differentiate into effector subtypes from a common precursor cell. IFN and IL-12 are the predominant Th1 polarizing cytokines whereas IL-4 directs Th2 polarization. The cytokines mediate their effects through specific receptor signalling. The differentiation process is complex, involving various signalling molecules and routes, as well as functions of the specific transcription factors. The functions of the Th1/Th2 cells are tightly regulated; however, knowledge on human Th cell differentiation is, as yet, fairly poor. The susceptibility for many immune-mediated disorders often originates from disturbed Th cell responses. Thus, research is needed for defining the molecular mechanisms involved in the differentiation and balanced functions of the Th cells. Importantly, the new information obtained will be crucial for a better understanding of the pathogenesis of immune-mediated disorders, such as asthma or autoimmune diseases. In the first subproject of this thesis, the role of genetic polymorphisms in the human STAT6, GATA3 and STAT4 genes were investigated for asthma or atopy susceptibility in Finnish asthma families by association analysis. These genes code for key transcription factors regulating Th cell differentiation. The study resulted in the identification of a GATA3 haplotype that associated with asthma and related traits (high serum IgE level). In the second subproject, an optimized method for human primary T cell transfection and enrichment was established. The method can be utilized for functional studies for the selected genes of interest. The method was also utilized in the third subproject, which aimed at the identification of novel genes involved in early human Th cell polarization (0-48h) using genome-wide oligonucleotide arrays. As a result, numerous genes and ESTs with known or unknown functions were identified in the study. Using an shRNA knockdown approach, a panel of novel IL-4/STAT6 regulated genes were identified in the functional studies of the genes. Moreover, one of the genes, NDFIP2, with a previously uncharacterized role in the human Th differentiation, was observed to promote IFN production of the differentiated Th1 cells. Taken together, the results obtained have revealed potential new relevant candidate genes serving as a basis for further studies characterizing the detailed networks involved in the human Th cell differentiation as well as in the genetic susceptibility of Th-mediated immune disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phage display is a powerful method of isolating of antibody fragments from highly diverse naive human antibody repertoires. However, the affinity of the selected antibodies is usually low and current methods of affinity maturation are complex and time-consuming. In this paper, we describe an easy way to increase the functional affinity (avidity) of single chain variable fragments (scFvs) by tetramerization on streptavidin, following their site-specific biotinylation by the enzyme BirA. Expression vectors have been constructed that enable addition of the 15 amino acid biotin acceptor domain (BAD) on selected scFvs. Different domains were cloned at the C-terminus of scFv in the following order: a semi-rigid hinge region (of 16 residues), the BAD, and a histidine tail. Two such recombinant scFvs directed against the carcinoembryonic antigen (CEA) were previously selected from human non-immune and murine immune phage display libraries. The scFvs were first synthesized in Escherichia coli carrying the plasmid encoding the BirA enzyme, and then purified from the cytoplasmic extracts by Ni-NTA affinity chromatography. Purified biotinylated scFvs were tetramerized on the streptavidin molecule to create a streptabody (StAb). The avidity of various forms of anti-CEA StAbs, tested on purified CEA by competitive assays and surface plasmon resonance showed an increase of more than one log, as compared with the scFv monomer counterparts. Furthermore, the percentage of direct binding of 125I-labeled StAb or monomeric scFv on CEA-Sepharose beads and on CEA-expressing cells showed a dramatic increase for the tetramerized scFv (>80%), as compared with the monomeric scFv (<20%). Interestingly, the percentage binding of 125I-labeled anti-CEA StAbs to CEA-expressing colon carcinoma cells was definitely higher (>80%) than that obtained with a reference high affinity murine anti-CEA mAb (30%). Another advantage of using scFvs in a StAb format was demonstrated by Western blot analysis, where tetramerized anti-CEA scFv could detect a small quantity of CEA at a concentration 100-fold lower than the monomeric scFv.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental models demonstrated that therapeutic induction of CD8 T cell responses may offer protection against tumors or infectious diseases providing that T cells have sufficiently high TCR/CD8:pMHC avidity for efficient Ag recognition and consequently strong immune functions. However, comprehensive characterization of TCR/CD8:pMHC avidity in clinically relevant situations has remained elusive. In this study, using the novel NTA-His tag-containing multimer technology, we quantified the TCR:pMHC dissociation rates (koff) of tumor-specific vaccine-induced CD8 T cell clones (n = 139) derived from seven melanoma patients vaccinated with IFA, CpG, and the native/EAA or analog/ELA Melan-A(MART-1)(26-35) peptide, binding with low or high affinity to MHC, respectively. We observed substantial correlations between koff and Ca(2+) mobilization (p = 0.016) and target cell recognition (p < 0.0001), with the latter independently of the T cell differentiation state. Our strategy was successful in demonstrating that the type of peptide impacted on TCR/CD8:pMHC avidity, as tumor-reactive T cell clones derived from patients vaccinated with the low-affinity (native) peptide expressed slower koff rates than those derived from patients vaccinated with the high-affinity (analog) peptide (p < 0.0001). Furthermore, we observed that the low-affinity peptide promoted the selective differentiation of tumor-specific T cells bearing TCRs with high TCR/CD8:pMHC avidity (p < 0.0001). Altogether, TCR:pMHC interaction kinetics correlated strongly with T cell functions. Our study demonstrates the feasibility and usefulness of TCR/CD8:pMHC avidity assessment by NTA-His tag-containing multimers of naturally occurring polyclonal T cell responses, which represents a strong asset for the development of immunotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notre système immunitaire joue un rôle important pour la protection envers les maladies infectieuses. Au cours d'une réponse à une infection primaire, des cellules B et des cellules T spécifiques, dirigées contre le pathogène en question, sont générées et certaines d'entre elles deviennent des cellules dites mémoires. Leur fonction est de nous protéger contre une nouvelle infection avec le même pathogène, une infection secondaire. Dans certaines situations, comme c'est par exemple le cas avec la grippe, les pathogènes ne sont pas toujours complètement identiques et les cellules mémoires ne sont pas à même d'assurer leur rôle protecteur et d'empêcher une réinfection. Pourtant, on ne sait à l'heure actuelle que très peu comment une immunité acquise, mais non protectrice, influence le développement d'une réponse immunitaire ultérieure. Dans la première partie de cette thèse, nous avons étudié comment les cellules T mémoires cytotoxiques altèrent la réponse de cellules T cytotoxiques nouvellement induites. Au cours d'une réaction immunitaire dirigée contre une infection primaire, un vaste répertoire de lymphocytes T est créé, constitué de cellules T possédant divers degrés d'affinité pour le pathogène. Lors d'une infection secondaire, seules les cellules T ayant une forte affinité pour le pathogène participent à la réponse. Nous avons pu démontrer que ce phénomène de restriction du répertoire des cellules T est principalement causé par les cellules T mémoires qui sont à même de reconnaître un antigène pathogénique présent dans les deux infections. Dans un deuxième projet, nous avons étudié comment l'absence de PTPN2 influence la réponse des cellules T. Chez l'homme, une mutation dans le gène de PTPN2 est associée à des maladies auto-immunes et résulte en une activité réduite de cette phosphatase dans les lymphocytes T. Nous avons montré que la baisse d'activité de la phosphatase PTNP2 conduit à une meilleure expansion des cellules T ayant une qualité comparable à des cellules T auto-antigène spécifiques. De plus, nous avons observé que la survie de ces cellules T effectues ayant une phosphatase diminuée est nettement améliorée. Cela peut conduire à une réponse immunitaire plus efficace ou, éventuellement, à une pathologie auto-immune plus grave. En outre, nos résultats montrent qu'en manipulant l'activité de cette phosphatase, il est possible d'augmenter l'efficacité du transfert des cellules T dans un hôte receveur. Un tel transfert de cellules T est pratiqué chez des patients atteints de tumeurs. Nos travaux suggèrent que la manipulation de la phosphatase PTPN2 pourrait donc représenter une approche thérapeutique novatrice et prometteuse. -- Notre système immunitaire joue un rôle important pour la protection contre les maladies. Les cellules T CD8+ ont une importance primordiale pour le contrôle d'infections primaires causées par des virus ou bactéries, mais également contre certaines tumeurs. Par conséquent, mieux comprendre les exigences nécessaires à l'induction de bonnes réponses des cellules T CD8 pourrait nous permettre de construire des vaccins contre les pathogènes contre lesquels nous n'avons pour l'instant pas de vaccins mais aussi d'améliorer les réactions immunitaires dirigées anti-tumorales. Dans la première partie de cette thèse, nous avons étudié l'influence qu'une immunité préexistante a sur la réponse des cellules T CD8. Nous sommes souvent exposés à des pathogènes qui sont similaires mais pas identiques à ceux que nous avons rencontrés auparavant. De telles infections hétérologues ne sont pas l'objet de beaucoup d'études et certains exemples indiquent même qu'une immunité préexistante partielle peut mener à une aggravation de la maladie. Nous avons étudié le répertoire des lymphocytes T CD8 qui sont générés lors d'une rencontre avec un nouvel antigène, et ce en comparant infection primaire et secondaire. En utilisant le modèle expérimental d'infections à Listeria monocytogenes, nous avons pu montrer que lors d'une infection primaire, un répertoire diversifié comprenant des cellules T CD8 de forte et faible affinité est constitué. Au contraire, dans le cas d'une infection secondaire, le répertoire des cellules T est fortement limité et seulement les lymphocytes T de forte affinité sont impliqués dans la réponse immunitaire. Nous avons pu démontrer que ces Rangements sont provoqués par des cellules T CD8 mémoires capables de reconnaître un antigène présent dans les deux infections. Cette augmentation du seuil d'activation des cellules effectrices est majoritairement causée par les lymphocytes T CD8 mémoires non transférables. Ces observations indiquent que les vaccins visant à induire des cellules T anti-tumorales de faible affinité seraient inefficaces si le vaccin contient des épitopes contre lesquels il existe une mémoire immunologique. Les réponses immunitaires conduites par les cellules T contre les antigènes tumoraux dépendent des cellules T CD8 de faible réactivité contre les antigènes tumoraux puisque les cellules à forte réactivité sont éliminées par les mécanismes de tolérance. Nous basant sur l'existence dans la littérature de preuves indiquant que PTPN2 influence la réponse des cellules T de faible affinité, nous nous sommes intéressés à comprendre comment PTPN2 impacte les réponses des cellules T CD8 en général. Nous avons remarqué que des cellules T CD8 déficientes en PTPN2 exhibent une meilleure capacité à proliférer suite à une faible ou courte stimulation du récepteur des lymphocytes T. La phase effectrice est prolongée et la contraction retardée résultant ainsi à globalement plus de cellules effectrices. Ce phénomène est également accompagné d'une meilleure survie des cellules effectrices de différentiation terminale. Une fois transférées dans un nouvel hôte receveur, les cellules effectrices terminales KLRG1+CD127- déficientes en phosphatase PTPN2 peuvent survivre et se transformer en cellules mémoires CD127+ fonctionnelles. De façon inattendue, nous avons découvert que l'élimination de PTPN2 améliore l'efficacité du transfert et la formation des cellules mémoires ainsi que leur capacité protectrice. Manipuler l'activité de cette phosphatase apparaît donc comme une approche intéressante et prometteuse pour la thérapie cellulaire par transfert adoptif de lymphocytes T. Nos observations montrent que la manipulation d'un facteur intrinsèque, l'absence de PTPN2, peut, dans certaines circonstances, améliorer la réponse des cellules T. Une meilleure connaissance des mécanismes contrôlant la réponse des lymphocytes T CD8 pourrait donc permettre la manipulation de ces derniers et conduire à des réponses immunitaires plus vigoureuses. Si ces réponses sont déclenchées par l'utilisation de vaccins, il est nécessaire de considérer l'historique d'une exposition préalable à des agents pathogènes ou à des vaccins puisque celle-ci peut, comme nous l'avons démontré, influencer le répertoire des cellules T recrutées dans la réponse immunitaire et, par conséquent, modifier l'aptitude de notre système immunitaire à faire face à une infection. -- Our immune system plays an important role in the protection from disease. CD8 T cells are critical for the control of primary infections with most viruses and certain bacteria as well as against some tumors. Therefore, better knowledge of CD8 T cell responses might enable us to generate vaccines against pathogens for which currently no vaccines are available or to improve anti-tumor immune responses. In the first part of this thesis we addressed the issue how previously acquired immunity impacts on the response of CD8 T cells. We are often exposed to pathogens that are related but not identical to the previously encountered ones. Such heterologous infections are not well studied and there are some indications that partial pre-existing immunity may in some cases even lead to an enhancement of disease. We specifically studied the T cell repertoire of CD8 T cells that are responding to a newly encountered antigen in secondary compared to primary infections. Using the experimental model of Listeria monocytogenes infections, we showed that in primary infections a wide repertoire including high and low affinity CD8 T cells is recruited into the immune response. In contrast to this, in secondary infections, the T cell repertoire is severely restricted and only T cells of high affinity are responding. We were able to pinpoint this difference to the presence of memory CD8 T cells that recognize an antigen that is shared between the two subsequent infections. This increase in the activation threshold was most effectively mediated via non-transferable memory CD8 T cells. This would argue that vaccines targeting low affinity tumor-specific T cells would fail if the vaccine contains previously encountered CD8 T cell epitopes. T cell mediated immune responses to tumor antigen rely often on T cells which weakly react to tumor antigen as high affinity T cells are eliminated by tolerance mechanisms. Following indication in the literature that PTPN2 impacts on the response of such weakly antigen-reactive T cells, we investigated how PTPN2 impacts in general the response of CD8 T cells. We observed that CD8 T cells lacking PTPN2 show an enhanced expansion following weak or short-term T cell receptor stimulation. The effector phase is prolonged and contraction delayed thus resulting in overall more effector cells. This is accompanied by a better survival of terminal effector cells. When transferred into new recipients, KLRG1+CD127- terminal effector cells lacking PTPN2 can survive and convert into CD127+ functional memory cells. Surprisingly, we discovered that elimination of PTPN2 enhances the transfer efficacy and formation of memory cells as well as the protective capacity. Targeting PTPN2 might thus be a promising approach for adoptive T cell therapy. Our observations show how the manipulation of an intrinsic factor, the absence of PTPN2, can enhance T cell responses under certain circumstances. A better understanding of underlying mechanisms for the control of CDS T cell responses might enable the manipulation of these and allow for more powerful responses. If these responses are induced through vaccines it is imperative that the previous history of exposure to pathogens or vaccines is considered as it can, as we have shown in this thesis, influence the recruited T cell repertoire and thus possibly the ability to handle the infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibodies play an important role in therapy and investigative biomedical research. The TNF-family member Receptor Activator of NF-κB (RANK) is known for its role in bone homeostasis and is increasingly recognized as a central player in immune regulation and epithelial cell activation. However, the study of RANK biology has been hampered by missing or insufficient characterization of high affinity tools that recognize RANK. Here, we present a careful description and comparison of two antibodies, RANK-02 obtained by phage display (Newa, 2014 [1]) and R12-31 generated by immunization (Kamijo, 2006 [2]). We found that both antibodies recognized mouse RANK with high affinity, while RANK-02 and R12-31 recognized human RANK with high and lower affinities, respectively. Using a cell apoptosis assay based on stimulation of a RANK:Fas fusion protein, and a cellular NF-κB signaling assay, we showed that R12-31 was agonist for both species. R12-31 interfered little or not at all with the binding of RANKL to RANK, in contrast to RANK-02 that efficiently prevented this interaction. Depending on the assay and species, RANK-02 was either a weak agonist or a partial antagonist of RANK. Both antibodies recognized human Langerhans cells, previously shown to express RANK, while dermal dendritic cells were poorly labeled. In vivo R12-31 agonist activity was demonstrated by its ability to induce the formation of intestinal villous microfold cells in mice. This characterization of two monoclonal antibodies should now allow better evaluation of their application as therapeutic reagents and investigative tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adrenoceptors (ARs), G-protein coupled receptors (GPCRs) at the plasma membrane, respond to endogenous catecholamines noradrenaline and adrenaline. These receptors mediate several important physiological functions being especially important in the cardiovascular system and in the regulation of smooth muscle contraction. Impairments in the function of these receptors can thus lead to severe diseases and disorders such as to cardiovascular diseases and benign prostatic hyperplasia. The Eastern green mamba (Dendroaspis angusticeps) venom has been shown to contain toxins that can antagonize the functions of GPCRs. The most well-known are muscarinic toxins (MTs) targeting muscarinic acetylcholine receptors (mAChRs) with high affinity and selectivity. However, some reports have indicated that these toxins might also act on the α1- and α2-ARs which can be divided into various subtypes; the α1-ARs to α1A-, α1B- and α1D-ARs and α2-ARs to α2A-, α2B- and α2C-ARs. In this thesis, the interaction of four common MTs (MT1, MT3, MT7 and MTα) with the adrenoceptors was characterized. It was also evaluated whether these toxins could be anchored to the plasma membrane via glycosylphosphatidylinositol (GPI) tail. Results of this thesis reveal that muscarinic toxins are targeting several α-adrenoceptor subtypes in addition to their previously identified target receptors, mAChRs. MTα was found to interact with high affinity and selectivity with the α2B-AR whereas MT7 confirmed its selectivity for the M1 mAChR. Unlike MTα and MT7, MT1 and MT3 have a broad range of target receptors among the α-ARs. All the MTs characterized were found to behave as non-competitive antagonists of receptor action. The interaction between MTα and the α2B-AR was studied more closely and it was observed that the second extracellular loop of the receptor functions as a structural entity enabling toxin binding. The binding of MTα to the α2B-AR appears to be rather complex and probably involves dimerized receptor. Anchoring MTs to the plasma membrane did not interfere with their pharmacological profile; all the GPI-anchored toxins created retained their ability to block their target receptors. This thesis shows that muscarinic toxins are able to target several subtypes of α-ARs and mAChRs. These toxins offer thus a possibility to create new subtype specific ligands for the α-AR subtypes. Membrane anchored MTs on the other hand could be used to block α-AR and mAChR actions in disease conditions such as in hypertension and in gastrointestinal and urinary bladder disorders in a cell-specific manner and to study the physiological functions of ARs and mAChRs in vivo in model organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-15 (IL-15) is a newly-discovered cytokine that is produced by activated monocytes early in the course of the innate immune response. IL-15 is able to bind to components of the interleukin-2 receptor (IL-2R) despite the fact that it has no sequence homology with IL-2. IL-15 stimulates human natural killer cell proliferation, cytotoxicity, and cytokine production and can substitute for IL-2 under most conditions. In vitro studies indicate that monocyte-derived IL-15 may be an important determinant of IFN-gamma production by NK cells. In addition, IL-15 is able to promote the survival of natural killer cells under serum-free conditions. The IL-15 receptor is a heterotrimeric complex which is composed of the IL-2Rß and g chains in combination with a unique alpha chain (IL-15a). The IL-15Ra chain has strong sequence homology to the IL-2Ra chain and confers high affinity binding to the IL-15R. In contrast to IL-2, transcript for IL-15 and IL-15a is expressed in a number of tissues and indicates that IL-15 may be an important ligand for cells that express components of the IL-2R

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP) = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs) have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h) is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute myelogenous leukemia (AML) blast cells show high-affinity degradation of low-density lipoprotein (LDL), suggesting an increased expression of cellular LDL receptors. LDE is a lipid microemulsion easily synthesized in vitro which is known to mimic the metabolic pathway of LDL. We used LDE as a carrier for daunorubicin and assayed the cytotoxicity of the complex using AML blast cells since RT-PCR analysis showed that AML cells express LDL receptor mRNA. The LDE:daunorubicin complex killed 46.7% of blast cells and 20.2% of normal bone marrow cells (P<0.001; Student t-test). Moreover, this complex destroyed AML blast cells as efficiently as free daunorubicin. Thus, LDE might be a suitable carrier of chemotherapeutic agents targeting these drugs to neoplastic cells and protecting normal tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucocorticoids (Gc) influence the differentiation of neural crest-derived cells such as those composing sympathoadrenal tumors like pheochromocytomas, as well as neuroblastomas and gangliomas. In order to obtain further information on the effects of Gc on cells evolving from the neural crest, we have used the human neuroblastoma cell line SK-N-SH to analyze: 1) the presence and the binding characteristics of Gc receptors in these cells, 2) the effect of dexamethasone (Dex) on the migration of SK-N-SH cells, and 3) the effect of Dex on the organization of the cytoskeleton of SK-N-SH cells. We show that: 1) receptors that bind [³H]-Dex with high affinity and high capacity (Kd of 9.6 nM, Bmax of 47 fmol/mg cytosolic protein, corresponding to 28,303 sites/cell) are present in cytosolic preparations of SK-N-SH cells, and 2) treatment with Dex (in the range of 10 nM to 1 µM) has an inhibitory effect (from 100% to 74 and 43%, respectively) on the chemotaxis of SK-N-SH cells elicited by fetal bovine serum. This inhibition is completely reversed by the Gc receptor antagonist RU486 (1 µM), and 3) as demonstrated by fluorescent phalloidin-actin detection, the effect of Dex (100 nM) on SK-N-SH cell migration is accompanied by modifications of the cytoskeleton organization that appear with stress fibers. These modifications did not take place in the presence of 1 µM RU486. The present data demonstrate for the first time that Dex affects the migration of neuroblastoma cells as well as their cytoskeleton organization by interacting with specific receptors. These findings provide new insights on the mechanism(s) of action of Gc on cells originating in the neural crest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most breast cancer risk factors are associated with prolonged exposure of the mammary gland to high levels of estrogens. The actions of estrogens are predominantly mediated by two receptors, ERα and ERβ, which act as transcription factors binding with high affinity to estrogen response elements in the promoter region of target genes. However, most target genes do not contain the consensus estrogen response elements, but rather degenerated palindromic sequences showing one or more mutations and other ER-binding sites such as AP-1 and SP-1. Using the differential display reverse transcription-polymerase chain reaction technique, our group identified several genes differentially expressed in normal tissue and in ER-positive and ER-negative primary breast tumors. One of the genes shown to be down-regulated in breast tumors compared to normal breast tissue was the PHLDA1 (Pleckstrin homology-like domain, family A, member 1). In the present study, we investigated the potential of PHLDA1 to be regulated by estrogen via ER in MCF-7 breast cancer cells. The promoter region of PHLDA1 shows an imperfect palindrome, an AP-1- and three SP-1-binding sites potentially regulated by estrogens. We also assessed the effects of 17β-estradiol on PHLDA1 mRNA expression in MCF-7 breast cancer cells. MCF-7 cells exposed to 10 nM 17β-estradiol showed more than 2-fold increased expression of the PHLDA1 transcripts compared to control cells (P = 0.05). The anti-estrogen ICI 182,780 (1 µM) inhibited PHLDA1 mRNA expression and completely abolished the effect of 10 nM 17β-estradiol on PHLDA1 expression (P < 0.05), suggesting that PHLDA1 is regulated by estrogen via ER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agmatine has neuroprotective effects on retinal ganglion cells (RGCs) as well as cortical and spinal neurons. It protects RGCs from oxidative stress even when it is not present at the time of injury. As agmatine has high affinity for various cellular receptors, we assessed protective mechanisms of agmatine using transformed RGCs (RGC-5 cell line). Differentiated RGC-5 cells were pretreated with 100 μM agmatine and consecutively exposed to 1.0 mM hydrogen peroxide (H2O2). Cell viability was determined by measuring lactate dehydrogenase (LDH), and the effects of selective alpha 2-adrenergic receptor antagonist yohimbine (0-500 nM) and N-methyl-D-aspartic acid (NMDA) receptor agonist NMDA (0-100 µM) were evaluated. Agmatine’s protective effect was compared to a selective NMDA receptor antagonist MK-801. After a 16-h exposure to H2O2, the LDH assay showed cell loss greater than 50%, which was reduced to about 30% when agmatine was pretreated before injury. Yohimbine almost completely inhibited agmatine’s protective effect, but NMDA did not. In addition, MK-801 (0-100 µM) did not significantly attenuate the H2O2-induced cytotoxicity. Our results suggest that neuroprotective effects of agmatine on RGCs under oxidative stress may be mainly attributed to the alpha 2-adrenergic receptor signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to identify the possible involvement of the GABAergic system in the anesthetic effect of Lippia alba essential oil (EO). We propose a new animal model using silver catfish (Rhamdia quelen) exposed to an anesthetic bath to study the mechanism of action of EO. To observe the induction and potentiation of the anesthetic effect of EO, juvenile silver catfish (9.30 ± 1.85 g; 10.15 ± 0.95 cm; N = 6) were exposed to various concentrations of L. alba EO in the presence or absence of diazepam [an agonist of high-affinity binding sites for benzodiazepinic (BDZ) sites coupled to the GABA A receptor complex]. In another experiment, fish (N = 6) were initially anesthetized with the EO and then transferred to an anesthetic-free aquarium containing flumazenil (a selective antagonist of binding sites for BDZ coupled to the GABA A receptor complex) or water to assess recovery time from the anesthesia. In this case, flumazenil was used to observe the involvement of the GABA-BDZ receptor in the EO mechanism of action. The results showed that diazepam potentiates the anesthetic effect of EO at all concentrations tested. Fish exposed to diazepam and EO showed faster recovery from anesthesia when flumazenil was added to the recovery bath (12.0 ± 0.3 and 7.2 ± 0.7, respectively) than those exposed to water (9.2 ± 0.2 and 3.5 ± 0.3, respectively). In conclusion, the results demonstrated the involvement of the GABAergic system in the anesthetic effect of L. alba EO on silver catfish.