461 resultados para h3
Resumo:
Epigenetic silencing of tumor suppressor genes by DNA hypermethylation at promoter regions is a common event in carcinogenesis and tumor progression. Abrogation of methylation and reversal of epigenetic silencing is a very potent way in cancer treatment. However, the reactivation mechanisms are poorly understood. In this study, we first developed a cell line model system named YB5, derived from SW48 cancer cell line, which bears one copy of stably integrated EGFP gene on Chromosome 1p31.1 region. The GFP gene expression is transcriptionally silenced due to the hypermethylated promoter CMV. However, the GFP expression can be restored using demethylating agent 5-aza-2' deoxycytidine (DAC), and detected by FACS and fluorescent microscopy. Using this system, we observed the heterogeneous reactivation induced by DAC treatment. After flow sorting, GFP negative cells exhibited similar level of incomplete demethylation compared to GFP positive cells on repetitive LINE1 element, tumor suppressor genes such as P16, CDH13, and RASSF1a, and CMV promoter as well. However, the local chromatin of CMV-GFP locus altered to an open structure marked by high H3 lysine 9 acetylation and low H3 lysine 27 tri-methylation in GFP positive cells, while the GFP negative cells retained mostly the original repressive marks. Thus, we concluded that DAC induced DNA hypomethylation alone does not directly determine the level of re-expression, and the resetting of the local chromatin structure under hypomethylation environment is required for gene reactivation. Besides, a lentivirus vector-based shRNA screening was performed using the YB5 system. Although it is the rare chance that vector lands in the neighboring region of GFP, we found that the exogenous vector DNA inserted into the upstream region of GFP gene locus led to the promoter demethylation and reactivated the silenced GFP gene. Thus, epigenetic state can be affected by changing of the adjacent nucleic acid sequences. Further, this hypermethylation silenced system was utilized for epigenetic drug screening. We have found that DAC combined with carboplatin would enhance the GFP% yield and increase expression of other tumor suppressor genes than DAC alone, and this synergistic effect may be related to DNA repair process. In summary, these studies reveal that reversing of methylation silencing requires coordinated alterations of DNA methylation, chromatin structure, and local microenvironment. ^
Resumo:
Chromatin, composed of repeating nucleosome units, is the genetic polymer of life. To aid in DNA compaction and organized storage, the double helix wraps around a core complex of histone proteins to form the nucleosome, and is therefore no longer freely accessible to cellular proteins for the processes of transcription, replication and DNA repair. Over the course of evolution, DNA-based applications have developed routes to access DNA bound up in chromatin, and further, have actually utilized the chromatin structure to create another level of complexity and information storage. The histone molecules that DNA surrounds have free-floating tails that extend out of the nucleosome. These tails are post-translationally modified to create docking sites for the proteins involved in transcription, replication and repair, thus providing one prominent way that specific genomic sequences are accessed and manipulated. Adding another degree of information storage, histone tail-modifications paint the genome in precise manners to influence a state of transcriptional activity or repression, to generate euchromatin, containing gene-dense regions, or heterochromatin, containing repeat sequences and low-density gene regions. The work presented here is the study of histone tail modifications, how they are written and how they are read, divided into two projects. Both begin with protein microarray experiments where we discover the protein domains that can bind modified histone tails, and how multiple tail modifications can influence this binding. Project one then looks deeper into the enzymes that lay down the tail modifications. Specifically, we studied histone-tail arginine methylation by PRMT6. We found that methylation of a specific histone residue by PRMT6, arginine 2 of H3, can antagonize the binding of protein domains to the H3 tail and therefore affect transcription of genes regulated by the H3-tail binding proteins. Project two focuses on a protein we identified to bind modified histone tails, PHF20, and was an endeavor to discover the biological role of this protein. Thus, in total, we are looking at a complete process: (1) histone tail modification by an enzyme (here, PRMT6), (2) how this and other modifications are bound by conserved protein domains, and (3) by using PHF20 as an example, the functional outcome of binding through investigating the biological role of a chromatin reader. ^
Resumo:
The E2F1 transcription factor is a well-known regulator of cell proliferation and apoptosis, but its role in the DNA damage response is less clear. It has been shown that E2F1 becomes stabilized in response to DNA double strand breaks (DSBs) and accumulates at sites of DSBs. This process requires ATM kinase and serine 31 phosphorylation, which provides a binding site for TopBp1. However, the role of E2F1 at sites of DNA damage is not clear. We expanded the study of E2F1's role in the DNA damage response by exploring its functions in ultraviolet (UV) induced DNA damage, and identified that E2F1 promotes DNA repair and cell survival. To further investigate the mechanisms underlying our findings, we examined the possibility for direct involvement of E2F1 in DNA repair. We found that E2F1 localizes to sites of UV irradiation-induced DNA damage dependent on the ATR kinase and serine 31 of E2F1. E2F1 also associates with the GCN5 histone acetyltransferase in response to UV irradiation and recruits GCN5 to sites of DNA damage. This correlates with an increase in histone H3 lysine 9 (H3K9) acetylation and chromatin relaxation. In the absence of E2F1 or GCN5, nucleotide excision repair (NER) proteins do not efficiently localize to sites of UV damage and DNA repair is impaired. E2F1 mutants unable to bind DNA or activate transcription retain the ability to stimulate NER. These findings demonstrate a non-transcriptional role for E2F1 in DNA repair involving GCN5-mediated H3K9 acetylation and increased accessibility to the NER machinery. ^
Resumo:
In this dissertation, I discovered that function of TRIM24 as a co-activator of ERα-mediated transcriptional activation is dependent on specific histone modifications in tumorigenic human breast cancer-derived MCF7 cells. In the first part, I proved that TRIM24-PHD finger domain, which recognizes unmethylated histone H3 lysine K4 (H3K4me0), is critical for ERα-regulated transcription. Therefore, when LSD1-mediated demethylation of H3K4 is inhibited, activation of TRIM24-regulated ERα target genes is greatly impaired. Importantly, I demonstrated that TRIM24 and LSD1 are cyclically recruited to estrogen responsive elements (EREs) in a time-dependent manner upon estrogen induction, and depletion of their expression exert corresponding time-dependent effect on target gene activation. I also identified that phosphorylation of histone H3 threonine T6 disrupts TRIM24 from binding to the chromatin and from activating ERα-regulated targets. In the second part, I revealed that TRIM24 depletion has additive effect to LSD1 inhibitor- and Tamoxifen-mediated reduction in survival and proliferation in breast cancer cells.
Resumo:
Sea surface temperature and salinity estimates reconstructed using planktonic foraminiferal abundance and delta18O records from core SU90-03 (40°N, 32°W, 2475 m water depth) reveal large climatic fluctuations linked to major instabilities in Northern Hemisphere ice sheets over the last 150 000 years. Episodes of enhanced ice rafted detritus (IRD) input were accompanied by discrete temperature minima, representing coolings of between 4 and 8°C, and reductions in surface salinity of up to 2.5-3.5 per mil. Several additional cooling episodes of a similar magnitude were documented during intervals of low IRD input that appear to be synchronous, within the limits of dating, with ice rafting events spatially confined to higher latitudes. Accelerator mass spectrometer 14C dates for Heinrich events (H1 - 14.2 ka, H2 - 21.4 ka, H3 - 26.7 ka, H4 - 34.8 ka, H5 - 47.2 ka) obtained from core SU90-03 agree well with other published age estimates and suggest a contemporaneous pattern of climate change throughout the North Atlantic during the last glacial period. This interpretation is supported by a comparison of IRD and palaeotemperature records from DSDP site 609 and core SU90-03, which clearly shows that the major climatic fluctuations identified at high latitudes were transmitted toward the subtropics. However, 14C dates suggest that ice rafting episodes may be diachronous to some extent. The northward migration of the polar front after the H1 event at 40°N in the mid-Atlantic occurred at 14 ka, approximately 500 years earlier than along the Portuguese margin, where the southerly advection of polar waters persisted within eastern boundary current system.