983 resultados para growth, development and aging
Resumo:
Wilms tumor (WT) is a childhood tumor of the kidney and a productive model for understanding the role of genetic alteration and interactions in tumorigenesis. The Wilms tumor gene 1 (WT1) is a transcriptional factor and one of the few genes known to have genetic alterations in WT and has been shown be inactivated in 20% of WTs. However, the mechanisms of how WT1 mutations lead to Wilms tumorigenesis and its influence on downstream genes are unknown. Since it has been established that WT1 is a transcriptional regulator, it has been hypothesized that the loss of WT1 leads to the dysregulation of downstream genes, in turn result in the formation of WTs. To identify the dysregulated downstream genes following WT1 mutations, an Affymetrix GeneChip Human Genome Array was previously conducted to assess the differentially expressed genes in the WT1-wildtype human and WT1-mutant human WTs. Approximately 700 genes were identified as being significantly dysregulated. These genes were further prioritized based on their statistical significance, fold change, chromosomal region, spatial pattern of gene expression and known or putative cellular functions. Mesenchyme homeobox 2 (MEOX2) was one of the most significantly upregulated genes in WT1-mutant WT. MEOX2 is known to play a role in cell proliferation, apoptosis, and differentiation. In addition to its biological roles, it is expressed during early kidney development in the condensed mesenchyme similar to WT1. Furthermore, the use of the Match® web-based tool from the BIOBASE Biological Data base identified a significant predicted WT1 binding site within the first intron of MEOX2. The similarity in spatial gene expression in the developing kidney and the significant predicted WT1 binding site found in the first intron of MEOX2 lead to the development of my hypothesis that MEOX2 is upregulated via a WT1-dependent manner. Here as a part of my master’s work, I have validated the Affymetrix GeneChip Human Genome Array data using an independent set of Wilms tumors. MEOX2 remained upregulated in the mutant WT1 Wilms tumor by 41-fold. Wt1 and Meox2 gene expression were assessed in murine newborn kidney; both Wt1 and Meox2 were expressed in the condensed, undifferentiated metanephric mesenchyme. I have shown that the in vivo ablation of Wt1 during embryonic development at embryonic day (E) 13.5 resulted in the slight increase of Meox2 gene expression by two fold. In order to functionally demonstrate the effect of the loss of Wt1 on Meox2 gene expression in undifferentiated metanephric mesenchyme, I have generated a kidney mesenchymal cell line to genetically ablate Wt1 in vitro by adenoviral infection. The ablation of Wt1 in the kidney mesenchymal cell line resulted in the upregulation of Meox2 by 61-fold. Moreover, the upregulation of Meox2 resulted in the significant induction of p21 and Itgb5. In addition to the dysregulation of these genes the ablation of Wt1 in the kidney mesenchymal cells resulted in decrease in cell growth and loss of cellular adherence. However, it is uncertain whether the upregulation of Meox2 caused this particular cellular phenotype. Overall, I have demonstrated that the upregulation of Meox2 is Wt1-dependent during early kidney development.
Resumo:
Two peptide transporter (PTR) homologs have been isolated from developing seeds of faba bear, (Vicia faba). VfPTR1 was shown to be a functional peptide transporter through complementation of a yeast mutant. Expression patterns of VfPTR1 and VfPTR2 as well as of the amino acid permease VfAAP1 (Miranda et al., 2001) were compared throughout seed development and germination. In developing seeds, the highest levels of VfPTR1 transcripts were reached during midcotyledon development, whereas VfAAP1 transcripts were most abundant during early cotyledon development, before the appearance of storage protein gene transcripts, and were detectable until late cotyledon development. During early germination, VfPTR1 mRNA appeared first in cotyledons and later, during seedling growth, also in axes and roots. Expression of VfPTR2 and VfAAP1 was delayed compared with VfPTR1, and was restricted to the nascent organs of the seedlings. Localization of VfPTR1 transcripts showed that this FTR is temporally and spatially regulated during cotyledon development. In germinating seeds, VfPTR1 mRNA was localized in root hairs and root epidermal cells, suggesting a role in nutrient uptake from the soil. In seedling roots, VfPTR1 was repressed by a dipeptide and by an amino acid, whereas nitrate was without influence.
Resumo:
XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.
Resumo:
Unraveling climatic effects on growth of oak - Europe’s most ecologically and economically important forest species - has been the subject of many recent studies; however, more insight based on field data is necessary to better understand the relationship between climate and tree growth and to adapt forest management strategies to future climate change. In this report, we explore the influence of temperature, precipitation and drought variability on the productivity and vitality of oak stands in the Czech Highlands. We collected 180 cores from mature oaks (Quercus petraea) at four forest stands in the Czech Drahany Highlands. Standard dendromethods were used for sample preparation, ring width measurements, cross-dating, chronology development, and the assessment of growth-climate response patterns. Crown vitality was also evaluated, using the modified ICP Forests methodology. Late spring precipitation totals between May and June as well as the mean July temperature for the year of ring formation were found to be the most important factors for oak growth, whereas crown condition was significantly affected by spring and summer drought. This study is rep-resentative for similar bio-ecological habitats across Central Europe and can serve as a dendroclima-tological blueprint for earlier periods for which detailed meteorological information is missing .
Resumo:
Purpose: Cardiomyocytes are terminally differentiated cells in the adult heart and ischemia and cardiotoxic compounds can lead to cell death and irreversible decline of cardiac function. As testing platforms, isolated organs and primary cells from rodents have been the standard in research and toxicology, but there is a need for better models that more faithfully recapitulate native human biology. Hence, a new in vitro model comprising the advantages of 3D cell culture and the availability of induced pluripotent stem cells (iPSC) from human origin was developed and characterized. Methods: Human cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) were studied in standard 2D culture and as cardiac microtissues (MTs) formed in hanging drops. 2D cultures were examined using immunofluorescence microscopy and Western blotting while the cardiac MTs were subjected to immunofluorescence, contractility, and pharmacological investigations. Results: iPSC-derived CMs in 2D culture showed well-formed myofibrils, cell-cell contacts positive for connexin-43, and other typical cardiac proteins. The cells reacted to pro-hypertrophic growth factors with a substantial increase in myofibrils and sarcomeric proteins. In hanging drop cultures, iPSC-derived cardiomyocytes formed spheroidal MTs within 4 days showing a homogeneous tissue structure with well-developed myofibrils extending throughout the whole spheroid without a necrotic core. MTs showed spontaneous contractions for more than 4 weeks that were recorded by optical motion tracking, sensitive to temperature, and responsive to electrical pacing. Contractile pharmacology was tested with several agents known to modulate cardiac rate and viability. Calcium-transients underlay the contractile activity and were also responsive to electrical stimulation, caffeine-induced Ca2+-release, extracellular calcium levels. Conclusions: 3D culture using iPSC-derived human cardiomyocytes provides an organoid human-based cellular platform that is free of necrosis and recapitulates vital cardiac functionality, thereby providing new and promising relevant model for the evaluation and development of new therapies and detection of cardiotoxicity.
A novel mutation in BCS1L associated with deafness, tubulopathy, growth retardation and microcephaly
Resumo:
We report a novel homozygous missense mutation in the ubiquinol-cytochrome c reductase synthesis-like (BCS1L) gene in two consanguineous Turkish families associated with deafness, Fanconi syndrome (tubulopathy), microcephaly, mental and growth retardation. All three patients presented with transitory metabolic acidosis in the neonatal period and development of persistent renal de Toni-Debré-Fanconi-type tubulopathy, with subsequent rachitis, short stature, microcephaly, sensorineural hearing impairment, mild mental retardation and liver dysfunction. The novel missense mutation c.142A>G (p.M48V) in BCS1L is located at a highly conserved region associated with sorting to the mitochondria. Biochemical analysis revealed an isolated complex III deficiency in skeletal muscle not detected in fibroblasts. Native polyacrylamide gel electrophoresis (PAGE) revealed normal super complex formation, but a shift in mobility of complex III most likely caused by the absence of the BCS1L-mediated insertion of Rieske Fe/S protein into complex III. These findings expand the phenotypic spectrum of BCS1L mutations, highlight the importance of biochemical analysis of different primary affected tissue and underline that neonatal lactic acidosis with multi-organ involvement may resolve after the newborn period with a relatively spared neurological outcome and survival into adulthood. CONCLUSION Mutation screening for BCS1L should be considered in the differential diagnosis of severe (proximal) tubulopathy in the newborn period. What is Known: • Mutations in BCS1L cause mitochondrial complex III deficiencies. • Phenotypic presentations of defective BCS1L range from Bjornstad to neonatal GRACILE syndrome. What is New: • Description of a novel homozygous mutation in BCS1L with transient neonatal acidosis and persistent de Toni-Debré-Fanconi-type tubulopathy. • The long survival of patients with phenotypic presentation of severe complex III deficiency is uncommon.
Resumo:
The mammalian Forkhead Box (Fox) transcription factor (FoxM1) is implicated in tumorgenesis. However, the role and regulation of FoxM1 in gastric cancer remain unknown.^ I examined FoxM1 expression in 86 cases of primary gastric cancer and 57 normal gastric tissue specimens. I found weak expression of FoxM1 protein in normal gastric mucosa, whereas I observed strong staining for FoxM1 in tumor-cell nuclei in various gastric tumors and lymph node metastases. The aberrant FoxM1 expression is associated with VEGF expression and increased angiogenesis in human gastric cancer. A Cox proportional hazards model revealed that FoxM1 expression was an independent prognostic factor in multivariate analysis. Furthermore, overexpression of FoxM1 by gene transfer significantly promoted the growth and metastasis of gastric cancer cells in orthotopic mouse models, whereas knockdown of FoxM1 expression by small interfering RNA did the opposite. Next, I observed that alteration of tumor growth and metastasis by elevated FoxM1 expression was directly correlated with alteration of VEGF expression and angiogenesis. In addition, promotion of gastric tumorigenesis by FoxM1 directly and significantly correlated with transactivation of vascular endothelial growth factor (VEGF) expression and elevation of angiogenesis. ^ To further investigate the underlying mechanisms that result in FoxM1 overexpression in gastric cancer, I investigated FoxM1 and Krüppel-like factor 4 (KLF4) expressions in primary gastric cancer and normal gastric tissue specimens. Concomitance of increased expression of FoxM1 protein and decreased expression of KLF4 protein was evident in human gastric cancer. Enforced KLF4 expression suppressed FoxM1 protein expression. Moreover, a region within the proximal FoxM1 promoter was identified to have KLF4-binding sites. Finally, I found an increased FoxM1 expression in gastric mucosa of villin-Cre -directed tissue specific Klf4-null mice.^ In summary, I offered both clinical and mechanistic evidence that dysregulated expression of FoxM1 play an important role in gastric cancer development and progression, while KLF4 mediates negative regulation of FoxM1 expression and its loss significantly contributes to FoxM1 dysregulation. ^
Resumo:
Cancer antigen 125 (CA125) is a tumor antigen that is routinely used to monitor the disease progress and the outcome of treatment in ovarian cancer patients. Elevated serum levels of CA125 are detected in over 80% of epithelial ovarian cancer patients. CA125 is a high molecular weight (>1M Dalton) mucin-type glycoprotein encoded by the MUC16 gene on human chromosome 19. Although MUC16 has served as the best serum marker for monitoring growth of ovarian cancer, roles for MUC16 in normal physiology and ovarian cancer are largely unknown. To understand the biological functions of MUC16, I characterized a mouse Muc16 homolog on chromosome 9 by means of expression pattern profiling, phenotype analysis of Muc16 knockout mice, and in vitro and in vivo studies of Muc16 null transformed ovarian surface epithelial (OSE) cells. ^ The mouse Muc16 homolog shares a conserved genomic structure with human MUC16. In addition to being expressed in mouse ovarian cancer, mouse Muc16 mRNA and protein were expressed in the mesothelia covering the heart, lung, ovary, oviduct, spleen, testis, and uterus. The conserved genomic structure and expression pattern of mouse Muc16 to human MUC16 suggests that mouse Muc16 is the ortholog of human MUC16. To understand the biological functions of Muc16, I generated Muc16 knockout mice. Muc16 knockout mice were viable, fertile and normal by one year of age. However, between 18 and 24 months of age, Muc16 knockout mice developed various tissue abnormalities such as ovarian cysts and tumors of the liver and other peritoneal organs. To determine the role of MUC16 in ovarian cancer progression, I established Muc16 null transformed ovarian surface epithelial (OSE) cell lines, following the same method to develop mouse model of epithelial ovarian cancer (Orsulic et al., 2002). Loss of Muc16 did not affect cell morphology, cell proliferation rate, or tumorigenic potential. However, Muc16-null OSE cells showed decreased attachment to extracellular matrix proteins as well as to primary mouse peritoneal mesothelial cells. Peritoneal mesothelia are the most frequent implantation sites of ovarian cancer. Furthermore, a pilot transplantation assay suggests that Muc16 null transformed OSE cells formed less disseminated tumors in the peritoneal cavity compared to wild-type OSE cells. ^ In conclusion, these results demonstrate that MUC16 is not required for normal mouse development or reproduction, but plays important roles in tissue homeostasis, ovarian cancer cell adhesion and dissemination. This study provides the first in vivo evidence of the roles of MUC16 in development, as well as ovarian cancer progression and dissemination. These studies offer valuable insights into possible mechanisms of ovarian cancer development and potential molecular targets for ovarian cancer treatment. ^
Resumo:
The growth patterns of weight from birth through the first twelve months of life among rural Taiwanese infants were investigated with the following objectives: (i) compare each of the parameters of the Count model estimated for infants who were nutritionally at risk with those for a reference population from the United States; and (ii) within the Taiwanese infants, account for the variance in the growth patterns in the first and second six months of life on the basis of selected ecological factors.^ The significance between group differences were observed in the patterns of the weight growth in both linear growth and in the timing and the direction of velocity changes. A significant decline in growth velocity was observed among Taiwanese infants at about the fourth month of life. The decline is in keeping with a recent proposal made by J. C. Waterlow regarding the timing of change in growth velocity among nutritionally at risk populations in developing countries. The growth course of a nutritionally at risk infant during the first three months is apparently protected by the nurturance of the mother and innate biological properties of the infant.^ A highly significant portion of the growth variance in the second six months of life was accounted for by exogenous factors and biological factors related to the infant. Conversely, none of the growth variance in the first six months of life was accounted for by predictor variables. The most potent determinant of growth in the second six months of life was seasonality which represents a multiple environmental event.^ The model parameters estimated from the Count model represent different aspect of physical growth; yet the correlation coefficients between parameters b and c are high (r > .80). Clearly, the biological interpretation of the model parameters requires analysis of the whole function in the specific context of a given age period. ^
Resumo:
Multiple dietary deficiencies and high rates of infectious illness are major health problems leading to malnutrition and limitation of growth of children in developing countries. Longitudinal studies which provide information on illness incidence and growth velocity are needed in order to untangle the complex interrelationship between nutrition, illness and growth. From 1967 to 1973, researchers led by Dr. Bacon Chow of the Johns Hopkins University School of Hygiene undertook a quasi-experimental prospective study in Suilin Township, Taiwan to determine the effects of a nutritional supplement to the diets of pregnant and lactating women on the growth, development and resistance to disease of their offspring. This dissertation presents results from the analysis of infant morbidity and postnatal growth.^ Maternal nutritional supplementation has no apparent effect on the postnatal growth or morbidity of infants. Significant sex differences exist in growth response to illness and in illness susceptibility. Male infants have more diarrhea and upper respiratory illness. Respiratory illness is positively associated with growth rate in weight in the first semester of life. Diarrhea is significantly negatively associated with growth in length in the second semester. Small-for-date infants are more susceptible to illness in general and have a different pattern of growth response than large-for-date infants.^ Principal components analysis of illness data is shown to be an effective technique for making more precise use of ambiguous morbidity data. Multiple regression with component scores is an accurate method for estimating variance in growth rate predicted by indepenent illness variables. A model is advanced in which initial postnatal growth rate determines subsequent susceptibility to nutritional stress and infection. Initial growth rate is a function of prenatal nutrition, but is not significantly affected by maternal supplementation during gestation or lactation. Critical evaluation is made of nutritional supplementation programs which do not afford disease control.^
Resumo:
Ras genes are mutated in 15% of human cancers. Ras GTPases operate as molecular switches regulating cellular processes including proliferation, differentiation, and apoptosis. The three main isoforms of Ras – H-Ras, K-Ras, and N-Ras – inhabit distinct nanodomains of the plasma membrane and intracellular compartments including the Golgi. However, the role of single endogenous Ras isoforms on these compartments remains unclear as most studies have utilized ectopically expressed and mutant forms of Ras proteins. In an effort to develop novel tools that will allow us to abrogate individual endogenous Ras isoforms, we targeted the catalytic domain of p120RasGAP to the plasma membrane with the hypervariable region (HVR) of H-Ras (GAP-CTH) or K-Ras (GAP-CTK) and to the Golgi using the HVR of H-Ras with insertion of a point mutation (GAP-CTH181S). We performed GST-RBD pull-downs on cells expressing each GAP construct and stimulated with epidermal growth factor (EGF). We found that GAP-CTH and GAP-CTK specifically inhibited H-Ras or K-Ras, respectively. However, we did not detect any effect of GAP-CTH181S on Ras activation. Additionally, we used confocal microscopy to verify the ability of GAP constructs to abrogate Ras activation in distinct sub-cellular compartments. We found that GAP-CTH inhibits H-Ras activation on the plasma membrane, while GAP-CTK inhibits K-Ras activation on the plasma membrane. On the contrary, GAP-CTH181S inhibited H-Ras activation on the Golgi. We also analyzed the effects of these GAP constructs on the activation of ERK and Akt in response to EGF stimulation. We found that EGF stimulation of the MAPK pathway was inhibited by GAP-CTK but none of the other GAP constructs, while Akt activation was not inhibited by any GAP construct. Finally, we assayed cellular proliferation and differentiation. We found that GAP-CTK and GAP-CTH were equipotent inhibitors of cellular growth, whereas GAP-CTH181S was less potent. We also found that GAP-CTK and GAP-CTH inhibited differentiation with similar potency, while GAP-CTH181S was more potent. This approach may be adapted to investigate any Ras-dependent signaling pathway. Therefore, it has the potential to become a powerful tool for studying Ras isoform-specific signaling outputs.
Resumo:
Dental caries is the most common chronic disease worldwide. It is characterized by the demineralization of tooth enamel caused by acid produced by cariogenic dental bacteria growing on tooth surfaces, termed bacterial biofilms. Cariogenesis is a complex biological process that is influence by multiple factors and is not attributed to a sole causative agent. Instead, caries is associated with multispecies microbial biofilm communities composed of some bacterial species that directly influence the development of a caries lesion and other species that are seemingly benign but must contribute to the community in an uncharacterized way. Clinical analysis of dental caries and its microbial populations is challenging due to many factors including low sensitivity of clinical measurement tools, variability in saliva chemistry, and variation in the microbiota. Our laboratory has developed an in vitro anaerobic biofilm model for dental carries to facilitate both clinical and basic research-based analyses of the multispecies dynamics and individual factors that contribute to cariogenicity. The rational for development of this system was to improve upon the current models that lack key elements. This model places an emphasis on physiological relevance and ease of maintenance and reproducibility. The uniqueness of the model is based on integrating four critical elements: 1) a biofilm community composed of four distinct and representative species typically associated with dental caries, 2) a semi-defined synthetic growth medium designed to mimic saliva, 3) physiologically relevant biofilm growth substrates, and 4) a novel biofilm reactor device designed to facilitate the maintenance and analysis. Specifically, human tooth sections or hydroxyapatite discs embedded into poly(methyl methacrylate) (PMMA) discs are incubated for an initial 24 hr in a static inverted removable substrate (SIRS) biofilm reactor at 37°C under anaerobic conditions in artificial saliva (CAMM) without sucrose in the presence of 1 X 106 cells/ml of each Actinomyces odontolyticus, Fusobacterium nucleatum, Streptococcus mutans, and Veillonella dispar. During days 2 and 3 the samples are maintained continually in CAMM with various exposures to 0.2% sucrose; all of the discs are transferred into fresh medium every 24 hr. To validate that this model is an appropriate in vitro representation of a caries-associated multispecies biofilm, research aims were designed to test the following overarching hypothesis: an in vitro anaerobic biofilm composed of four species (S. mutans, V. dispar, A. odontolyticus, and F. nucleatum) will form a stable biofilm with a community profile that changes in response to environmental conditions and exhibits a cariogenic potential. For these experiments the biofilms as described above were exposed on days 2 and 3 to either CAMM lacking sucrose (no sucrose), CAMM with 0.2% sucrose (constant sucrose), or were transferred twice a day for 1 hr each time into 0.2% sucrose (intermittent sucrose). Four types of analysis were performed: 1) fluorescence microscopy of biofilms stained with Syto 9 and hexidium idodine to determine the biofilm architecture, 2) quantitative PCR (qPCR) to determine the cell number of each species per cm2, 3) vertical scanning interferometry (VSI) to determine the cariogenic potential of the biofilms, and 4) tomographic pH imaging using radiometric fluorescence microscopy after exposure to pH sensitive nanoparticles to measure the micro-environmental pH. The qualitative and quantitative results reveal the expected dynamics of the community profile when exposed to different sucrose conditions and the cariogenic potential of this in vitro four-species anaerobic biofilm model, thus confirming its usefulness for future analysis of primary and secondary dental caries.
Resumo:
We studied the effects of temperature and pH on larval development, settlement and juvenile survival of a Mediterranean population of the sea urchin Arbacia lixula. Three temperatures (16, 17.5 and 19 °C) were tested at present pH conditions (pHT 8.1). At 19 °C, two pH levels were compared to reflect present average (pHT 8.1) and near-future average conditions (pHT 7.7, expected by 2100). Larvae were reared for 52-days to achieve the full larval development and complete the metamorphosis to the settler stage. We analyzed larval survival, growth, morphology and settlement success. We also tested the carry-over effect of acidification on juvenile survival after 3 days. Our results showed that larval survival and size significantly increased with temperature. Acidification resulted in higher survival rates and developmental delay. Larval morphology was significantly altered by low temperatures, which led to narrower larvae with relatively shorter skeletal rods, but larval morphology was only marginally affected by acidification. No carry-over effects between larvae and juveniles were detected in early settler survival, though settlers from larvae reared at pH 7.7 were significantly smaller than their counterparts developed at pH 8.1. These results suggest an overall positive effect of environmental parameters related to global change on the reproduction of A. lixula, and reinforce the concerns about the increasing negative impact on shallow Mediterranean ecosystems of this post-glacial colonizer.
Resumo:
Ocean acidification is predicted to have severe consequences for calcifying marine organisms especially molluscs. Recent studies, however, have found that molluscs in marine environments with naturally elevated or fluctuating CO2 or with an active, high metabolic rate lifestyle may have a capacity to acclimate and be resilient to exposures of elevated environmental pCO2. The aim of this study was to determine the effects of near future concentrations of elevated pCO2 on the larval and adult stages of the mobile doughboy scallop, Mimachlamys asperrima from a subtidal and stable physio-chemical environment. It was found that fertilisation and the shell length of early larval stages of M. asperrima decreased as pCO2 increased, however, there were less pronounced effects of elevated pCO2 on the shell length of later larval stages, with high pCO2 enhancing growth in some instances. Byssal attachment and condition index of adult M. asperrima decreased with elevated pCO2, while in contrast there was no effect on standard metabolic rate or pHe. The responses of larval and adult M. asperrima to elevated pCO2 measured in this study were more moderate than responses previously reported for intertidal oysters and mussels. Even this more moderate set of responses are still likely to reduce the abundance of M. asperrima and potentially other scallop species in the world's oceans at predicted future pCO2 levels.
Resumo:
Thailand has recently strengthened its economic policy toward its neighboring countries in coordination with domestic regional development. It is widely recognized that economic cooperation with neighboring countries is essential in preventing the inflow of illegal labor and effectively utilizing labor and resources through the relocation of production bases. This direction is strengthened by elaborating the GMS-EC and the ECS (Economic Cooperation Strategy). In addition, economic dependency of the neighboring countries on Thailand is generally high. In this report, firstly, Thai regional development policy will be made clear in relation to its economic policy toward neighboring countries as well as the status quo of the industrial estates. Secondly, Thai policy toward the neighboring countries is examined referring to the concept of wide-ranging economic zones, regional economic cooperation and special border economic zones. Thirdly, the paper will discuss how closely the economies between Thailand and the neighboring countries are related through trade and investment. Lastly, some implications on Japan's economic cooperation will also be explored.