896 resultados para graph entropy
Resumo:
n this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.
Resumo:
Isothermal magnetization curves up to 23 T have been measured in Gd5Si1.8Ge2.2. We show that the values of the entropy change at the first-order magnetostructural transition, obtained from the Clausius-Clapeyron equation and the Maxwell relation, are coincident, provided the Maxwell relation is evaluated only within the transition region and the maximum applied field is high enough to complete the transition. These values are also in agreement with the entropy change obtained from differential scanning calorimetry. We also show that a simple phenomenological model based on the temperature and field dependence of the magnetization accounts for these results.
Resumo:
The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Ga shape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at both the martensitic variant and magnetic domain length scales. A large entropy change induced by moderate magnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not very different. We also show that this entropy change is not associated with the entropy difference between the martensitic and the parent phase arising from the change in the crystallographic structure which has been found to be independent of the magnetic field within this range of fields.
Resumo:
In the previous Comment, Forker and co-workers claim that perturbed angular correlation (PAC) data leave no alternative to the conclusion that the spontaneous magnetization of PrCo2 and NdCo2 undergoes a discontinuous, first-order phase transition at TC. We show here that their claim is in clear contradiction with a wealth of experimental evidence, including our own. Finally, we propose a possible origin for the disagreement between their interpretation of the PAC results and the literature on this subject.
Resumo:
Realistic nucleon-nucleon interactions induce correlations to the nuclear many-body system, which lead to a fragmentation of the single-particle strength over a wide range of energies and momenta. We address the question of how this fragmentation affects the thermodynamical properties of nuclear matter. In particular, we show that the entropy can be computed with the help of a spectral function, which can be evaluated in terms of the self-energy obtained in the self-consistent Green's function approach. Results for the density and temperature dependences of the entropy per particle for symmetric nuclear matter are presented and compared to the results of lowest order finite-temperature Brueckner-Hartree-Fock calculations. The effects of correlations on the calculated entropy are small, if the appropriate quasiparticle approximation is used. The results demonstrate the thermodynamical consistency of the self-consistent T-matrix approximation for the evaluation of the Green's functions.
Resumo:
A graph G is strongly distance-balanced if for every edge uv of G and every i 0 the number of vertices x with d.x; u/ D d.x; v/ 1 D i equals the number of vertices y with d.y; v/ D d.y; u/ 1 D i. It is proved that the strong product of graphs is strongly distance-balanced if and only if both factors are strongly distance-balanced. It is also proved that connected components of the direct product of two bipartite graphs are strongly distancebalanced if and only if both factors are strongly distance-balanced. Additionally, a new characterization of distance-balanced graphs and an algorithm of time complexity O.mn/ for their recognition, wheremis the number of edges and n the number of vertices of the graph in question, are given
Resumo:
A profile is a finite sequence of vertices of a graph. The set of all vertices of the graph which minimises the sum of the distances to the vertices of the profile is the median of the profile. Any subset of the vertex set such that it is the median of some profile is called a median set. The number of median sets of a graph is defined to be the median number of the graph. In this paper, we identify the median sets of various classes of graphs such as Kp − e, Kp,q forP > 2, and wheel graph and so forth. The median numbers of these graphs and hypercubes are found out, and an upper bound for the median number of even cycles is established.We also express the median number of a product graph in terms of the median number of their factors.
Resumo:
For a set S of vertices and the vertex v in a connected graph G, max x2S d(x, v) is called the S-eccentricity of v in G. The set of vertices with minimum S-eccentricity is called the S-center of G. Any set A of vertices of G such that A is an S-center for some set S of vertices of G is called a center set. We identify the center sets of certain classes of graphs namely, Block graphs, Km,n, Kn −e, wheel graphs, odd cycles and symmetric even graphs and enumerate them for many of these graph classes. We also introduce the concept of center number which is defined as the number of distinct center sets of a graph and determine the center number of some graph classes
Resumo:
Quantile functions are efficient and equivalent alternatives to distribution functions in modeling and analysis of statistical data (see Gilchrist, 2000; Nair and Sankaran, 2009). Motivated by this, in the present paper, we introduce a quantile based Shannon entropy function. We also introduce residual entropy function in the quantile setup and study its properties. Unlike the residual entropy function due to Ebrahimi (1996), the residual quantile entropy function determines the quantile density function uniquely through a simple relationship. The measure is used to define two nonparametric classes of distributions